
DATA STRUCTURES AND

ALGORITHMS

Introduction:

data, data structures,abstract data types,

algorithms, arrays

About lecturer

Head of Information Systems Department

prof. dr. Dalius Mažeika

room No. L413

e-mail Dalius.Mazeika@vgtu.lt

Tel. 27449830

http://dma.vgtu.lt

mailto:Dalius.Mazeika@vgtu.lt
http://dma.vgtu.lt/

Lectures

• Theory – every Wednesday at 8:30 am

• Practice – every Wednesday at 10:20 am

Structure of the final grade

• Exam – coefficient 0.6

• Practice – coefficient 0.2 (data structures project) +

coefficient 0.2 (sorting algorithm project)

• Additional 0.2 point can granted for every well-done

homework.

Literature

• Clifford A. Shaffer. A Practical Introduction to Data

Structures and Algorithm Analysis. Virginia Tech Blacksburg,

VA 24061, 2011.

• T.Cormen, etc. Introduction to Algorithms. MIT, 2009.

• W.Collins. Data structures and standart template library.

McGraw Hill, 2003.

• R.Čiegis. Duomenų struktūros, algoritmai ir jų analizė.

Vilnius, Technika 2007.

• Baniulis, Tamulynas. Duomenų struktūros. Kaunas,

Technologija, 2003.

• http://www.academictutorials.com/data-structure/

• http://cprogramminglanguage.net/

http://www.academictutorials.com/data-structure/
http://cprogramminglanguage.net/l

Content of the lecture

• Data and relations

• Data Structures

• Algorithms

• Relation between Algorithms and Data Structures

• Abstract data types

• Arrays

Introduction

Representing information is fundamental to computer

science. The primary purpose of most computer programs

is not to perform calculations, but to store and

retrieve information — usually as fast as possible.

The study of data structures and the algorithms that

manipulate them is at the heart of computer science.

This course will help you to understand how to

structure information to support efficient processing.

The need for Data Structures

In the most general sense, a data structure is any data

representation and its associated operations.

Even an integer or floating point number stored on the

computer can be viewed as a simple data structure.

More typically, a data structure is meant to be an

organization or structuring for a collection of data items.

A sorted list of integers stored in an array is an example of

such a structuring.

Abstract Data Types

A type is a collection of values.

For example, the Boolean type consists of the values true and

false. The integers also form a type. An integer is a simple type

because its values contain no subparts. A bank account record

will typically contain several pieces of information such as

name, address, account number, and account balance. Such a

record is an example of an aggregate type or composite type.

A data type is a type together with a collection of

operations to manipulate the type.

For example, an integer variable is a member of the integer

data type. Addition is an example of an operation on the integer

data type.

Abstract Data Types

An abstract data type (ADT) is the realization of a data

type as a software component.

The interface of the ADT is defined in terms of a type and a

set of operations on that type. The behavior of each

operation is determined by its inputs and outputs.

An ADT does not specify how the data type is

implemented. These implementation details are hidden

from the user of the ADT and protected from outside

access, a concept referred to as encapsulation.

Data structures

A data structure is the implementation for an ADT.

In an object-oriented language such as C++, an ADT and its

implementation together make up a class.

Each operation associated with the ADT is implemented by

a member function or method. The variables that define the

space required by a data item are referred to as data

members.

An object is an instance of a class, that is, something that is

created and takes up storage during the execution of a

computer program.

Data structures

The term “data structure” often refers to data stored in

a computer’s main memory.

Example:

• class -> object

• Data types C/C++

(int, short int, float, double, long double, char, bool).

The related term file structure often refers to the

organization of data on peripheral storage, such as a disk

drive or CD-ROM.

Design patterns

The relationship between data items, abstract data types,

and data structures. The ADT defines the logical form of the

data type. The data structure implements the physical form

of the data type.

Problems, Algorithms, and Programs

Programmers commonly deal with problems, algorithms,

and computer programs.

• A problem is a function or a mapping of inputs to outputs.

(problem is a task to be performed). Problem definition

should not include any constraints on how the problem is to

be solved.

• An algorithm is a recipe for solving a problem whose

steps are concrete and unambiguous. The algorithm must

be correct, of finite length, and must terminate for all inputs.

• A program is an instantiation of an algorithm in a

computer programming language.

Algorithm

An algorithm is a method or a process followed to

solve a problem.

If the problem is viewed as a function, then an algorithm is

an implementation for the function that transforms an input

to the corresponding output.

A problem can be solved by many different algorithms. A

given algorithm solves only one problem (i.e., computes a

particular function).

AlgorithmINPUT OUTPUT

Algorithm

Algorithm can be represented as:

• Flowchart

• Abstract language

• Human language

Algorithm is coded using one of the computer programming

language.

Algorithm

Example of the Factorial

calculation.

begin int Factorial (N)

F = 1;

for (M = 1; M != N ; M++)

F = F * M;

return (F);

end Factorial

Properties of the Algorithm

Algorithm must have the following properties:

• It must be correct

• There can be no ambiguity as to which step will be

performed next

• It must be composed of a finite number of steps

• It must terminate for all inputs (does not fall into an

infinite loop).

Array

Array is a data structure that has the following

properties:

• All elements of the array has the same data type;

• Number of elements is fixed and can’t be changed;

• Each element has index number;

• Each element can be accessed by referring it index

number.

Arrays has dimension and way how elements are stored

depends on array dimension.

Arrays can have one dimension, two dimensions and etc.

Array

Dimension of the array is used to understand the way how

elements are virtually stored in the memory.

Elements of the array are stored in sequencial way in the

physical memory.

Dimension of the array help us to understand array as

multidimensional structure.

Two-dimensional array can be defined as one-dimensional

array, but elements of that array are one-dimentional

arrays.

Array

Elements of the array are defined using indexes:

• One-dimensional A[0]; A[1]; A[2]

• Two-dimensional B[0] [0]; B[0][1]; B[1][2];

• Three-dimensionalC[0] [0] [0]; C[0][0][1]; C[1][2][1];

Indexes are integers. Lets assume that indexes are within

interval [L;U]. Then number of the elements are calculated

using the following formula:

U - L + 1

Indexes

Lets assume:

• Size of the element is S bytes;

• Address of the first byte of the first element is B.

Then:

Address of the element i of the one-dimentional array can

be calculated as follows:

A[i] = B + (i – L)*S

Address of the element A[i] [j] of the two-dimentional array

can be calculated as follows:

A[i] [j]= B + (i – L1)(U2 - L2 +1)*S + (j - L2)*S

Two dimentional array

[2][7]

sales [0] sales [1]

Structure of the

array: sales[10][10]

Adding and deleting elements

New element is added to the end of array. Index number

of a newly added element is equal to i+1, where i is the

index number of the last element (before adding

procedure).

Important. Array must be not full if you want to add new

element.

Any element can be deleted from the array. If deleted

element isn’t the last element, then all elements located at

the right side must be shifted to the left side by one

position.

Practice

• Microsoft Visual C++ Exress

• First programme “Hello world”

• Solving quadratic equation

• How to find even and odd numbers

• Primary numbers

