
DATA STRUCTURES AND 

ALGORITHMS 

Fast sorting algorithms 

Shellsort, Mergesort, Quicksort  



Summary of the previous lecture 

• Why sorting is needed ? 

• Examples from everyday life 

 

• What are the basic operations in sorting procedure? 
 

• Simple sorting algorithms 

• Selection sorting 

• Insertion sorting 

• Bubble sorting 

 



Running time of the simple sorting 



ShellSort 

Shellsort is sorting algorithm invented by D.L. Shell. 

It is also sometimes called the diminishing increment sort. 

 

Shellsort also exploits the best-case performance of 

Insertion Sort.  

 

Shellsort’s strategy is to make the list “mostly sorted” so 

that a final Insertion Sort can finish the job.  

 

When properly implemented, Shellsort will give substantially 

better performance than O(n2) in the worst case. 



Principle of ShellSort  

Shellsort uses a process that forms the basis for many of the 

quick sort algorithms:  

• Break the list into sublists,  

• Sort sublists independently,  

• Recombine the sublists 

• Repeat sorting loop on newly breaked sublists   

 

 

Shellsort breaks the array of elements into “virtual” sublists. 

Each sublist is sorted using an Insertion Sort. Another group of 

sublists is then chosen and sorted, and so on. 

 

Algorithm is not stable. 



Example 

Let us assume that N is the number of elements to be sorted, and 

N = 2k. 

 

One possible implementation of Shellsort will begin by breaking 

the list into N/2 sublists of 2 elements each, where the array index 

of the 2 elements in each sublist differs by N/2.  

 

j = i + N/2 

 

If there are 16 elements in the array indexed from 0 to 15, there 

would initially be 8 sublists of 2 elements each.  

The first sublist would be the elements in positions 0 and 8, the 

second in positions 1 and 9, and so on.  

 

Each list of two elements is sorted using Insertion Sort. 



Example (cont.) 



ShellSort  

void Shellsort (int v[ ], int n) 

{ 

    int gap, i, j, temp; 

 

    for (gap = n/2; gap > 0; gap /= 2) 

        for ( i = gap; i < n; i++) 

            for ( j = i-gap; j >=0 && v[ j ] > v[ j+gap ];  j -= gap) { 

 

                temp = v[ j ]; 

                v[ j ] = v[ j+gap ]; 

                v[ j+gap ] = temp; 

 

            } 

} 

 

 



ShellSort properties 

Running time of shell sort depends on the increment sequence. 

For the increments 1; 4; 13; 40; 121; ...,  

 

nj = 3nj-1 + 1,   where n0 = 0 

 

which is what is used here, the running time is O(n1.5).  

 

For other increments, time complexity is known to be O(n4/3) and 

even O(n·lg2(n)).  

 

Shellsort illustrates how we can sometimes exploit the special 

properties of an algorithm (Insertion Sort) even if in general that 

algorithm is unacceptably slow. 



MergeSort 

A natural approach to problem solving is divide and conquer.  

 

In terms of sorting, we might consider:  

• breaking the list to be sorted into pieces (divide step)  

• process sorting on the pieces (conquer step)  

• put pieces back together somehow ( combine step) 

 

A simple way to do this would be to split the list in half, sort the 

halves, and then merge the sorted halves together.  

 

This is the idea behind Mergesort. 

 

Mergesort was invented by John von Neumann in 1945.  



MergeSort in more detail 

Since we are dealing with subproblems, we state each subproblem 

as sorting a subarray A[p].  

Initially, p = 1…n, but p values change as we recurse through 

subproblems. To sort A[p] the following steps must be produced: 

 
1. Divide Step 

If a given array A has zero or one element, simply return; it is already sorted. 

Otherwise, split A[p] into two subarrays A[p .. q] and A[q + 1 .. n], each containing 

about half of the elements of A[p .. n]. That is, q is the halfway point of A[p]. 

 

2. Conquer Step 

Conquer by recursively sorting the two subarrays A[p ... q] and A[q + 1 .. n]. 

 

3. Combine Step 

Combine the elements back in A[p] by merging the two sorted subarrays A[p .. q] 

and A[q + 1 .. n] into a sorted sequence. To accomplish this step, we will define a 

procedure MERGE (A, p, q, r). 



MergeSort 

Nice example: 
http://www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingII/mergeSort/mergeSort.html  

http://www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingII/mergeSort/mergeSort.html


MergeSort running time 

Assume that n is a power of 2 so that each divide step 

yields two subproblems, both of size exactly n/2. 
 

The base case occurs when n = 1. 
 

When n ≥ 2, time for merge sort steps: 

Divide: Just compute q as the average of p and n, which 

takes constant time i.e. O(1). 

Conquer: Recursively solve 2 subproblems, each of size 

n/2, which is 2T(n/2). 

Combine: MERGE on an n-element subarray takes O(n) 

time. 



MergeSort running time 

Summed together they give a function that is linear in n, 

which is O(n).  

Therefore, the recurrence for merge sort running time is: 

        

   T(n) = O(n),                 if n=1 

          T(n) = 2T(n/2) + O(n), if n >1 

   T(n) = O(n log2n),       if (recursive)   

 



MergeSort code 

#include <stdio.h> 

 

void mergeSort (int numbers[ ], int temp[ ], int array_size); 

void m_sort       (int numbers[ ], int temp[ ], int left, int right); 

void merge       (int numbers[], int temp[], int left, int mid, int right); 

 

int main() 

{ 

 int array1 [5] = {65, 72, 105, 55, 2}; 

 int temp_array [5]; 
 

 mergeSort (array1, temp_array, 5); 

               printf(“Sorted array\n\n”); 

      for (int i = 0; i < 5; i++) 

      { 

      printf(“%d”, array1[i] ); 

       } 

 return 0;  

} 



MergeSort code (cont.) 

void mergeSort ( int numbers[ ], int temp[ ], int array_size) 

{ 

      m_sort (numbers[ ], temp[], 0, array_size - 1); 

} 

 

void m_sort ( int numbers[ ], int temp[ ], int left, int right ) 

{ 

  int mid; 
 

  if (right > left) 

  { 

    mid = (right + left) / 2; 

    m_sort (numbers, temp, left, mid); 

    m_sort (numbers, temp, (mid+1), right); 

 

    merge(numbers, temp, left, (mid+1), right); 

  } 

} 



MergeSort code (cont.) 
void merge ( int numbers[ ], int temp[ ], int left, int mid, int right ) 

{ 

  int i, left_end, num_elements, tmp_pos; 

  left_end = (mid - 1); 

  tmp_pos = left; 

  num_elements = (right - left + 1); 
 

  while ( (left <= left_end) && (mid <= right) ) 

  { 

    if (numbers [left] <= numbers [mid]) 

    { 

      temp [tmp_pos] = numbers [left]; 

      tmp_pos += 1; 

      left += 1; 

    } 

    else 

    {   temp [tmp_pos] = numbers [mid]; 

        tmp_pos += 1; 

         mid += 1; 

    }  }  



MergeSort code (cont.) 

while (left <= left_end) 

  { 

    temp [tmp_pos] = numbers[left]; 

    left += 1; 

    tmp_pos += 1; 

  } 

  while (mid <= right) 

  { 

    temp [tmp_pos] = numbers[mid]; 

    mid += 1; 

    tmp_pos += 1; 

  } 

  // modified 

  for (i=0; i < num_elements; i++) 

  { 

    numbers [right] = temp [right]; 

    right -= 1; 

  } } 



Quicksort 

Quicksort is named so because, when properly implemented, it 

is the fastest known general-purpose in-memory sorting 

algorithm in the average case. It does not require the extra 

array needed by Mergesort, so it is space efficient as well. 

 

Quicksort uses the the same divide and conquer principle. 

 

Quicksort algorithm was developed by Tony Hoare (in USSR) 

in 1960. 
  

 



Quicksort 

The steps of Quicksort algorithm are: 

 

•  Pick an element, called a pivot, from the list.  

•  Reorder the list so that all elements with values less than 

the   pivot come before the pivot, while all elements with 

values greater than the pivot come after it (equal values can 

go either way). After this partitioning, the pivot is in its final 

position. This is called the partition operation.  

•  Recursively sort the sublist of lesser elements and the 

sublist of greater elements. 

 



Quicksort example 



Quicksort 

Quick sort works by partitioning a given array A[p],  p=0, .. r 

into two non-empty subarray A[p . . q] and A[q+1 . . r] such 

that every key in A[p . . q] is less than or equal to every key 

in A[q+1 . . r].  

 

The exact position of the partition depends on the given array 

and index q is computed as a part of the partitioning 

procedure. 

  

QuickSort 

If p < r then  

    q = Partition (A, p, r)  

    Recursive call to Quick Sort (A, p, q)  

    Recursive call to Quick Sort (A, q + r, r)  



Partitioning procedure 



Choice of Pivot 

Possibilities of pivot choice:  

• the leftmost element (worst-case behavior on already sorted arrays) 

• the rightmost element (worst-case behavior on already sorted arrays) 

• random index of the array 

• middle index of the array 

• median of the first, middle and last element of the partition   

  for the pivot (especially for longer partitions). 



Quicksort running time 

Worst case performance  

T(n) = O(n2)  

 

Best case performance  

T(n) = O(n log n)  

 

Average case performance  

T(n) = O(n log n)  

 

 



Quicksort code 

void quickSort(int arr[ ], int left, int right) { 

      int i = left, j = right; 

      int tmp; 

      int pivot = arr[(left + right) / 2]; 

 

            while (i <= j) {  // partition 

            while (arr[i] < pivot) 

                  i++; 

            while (arr[j] > pivot) 

                  j--; 

            if (i <= j) { 

                  tmp = arr[i]; 

                  arr[i] = arr[j]; 

                  arr[j] = tmp; 

                  i++; 

                  j--; 

            }      

      } 



Quicksort code (cont.) 

/* recursion */ 

 

      if (left < j) 

            quickSort(arr, left, j); 

 

      if (i < right) 

            quickSort(arr, i, right); 

 

} 

 

 


