
DATA STRUCTURES AND

ALGORITHMS

Fast sorting algorithms

Shellsort, Mergesort, Quicksort

Summary of the previous lecture

• Why sorting is needed ?

• Examples from everyday life

• What are the basic operations in sorting procedure?

• Simple sorting algorithms

• Selection sorting

• Insertion sorting

• Bubble sorting

Running time of the simple sorting

ShellSort

Shellsort is sorting algorithm invented by D.L. Shell.

It is also sometimes called the diminishing increment sort.

Shellsort also exploits the best-case performance of

Insertion Sort.

Shellsort’s strategy is to make the list “mostly sorted” so

that a final Insertion Sort can finish the job.

When properly implemented, Shellsort will give substantially

better performance than O(n2) in the worst case.

Principle of ShellSort

Shellsort uses a process that forms the basis for many of the

quick sort algorithms:

• Break the list into sublists,

• Sort sublists independently,

• Recombine the sublists

• Repeat sorting loop on newly breaked sublists

Shellsort breaks the array of elements into “virtual” sublists.

Each sublist is sorted using an Insertion Sort. Another group of

sublists is then chosen and sorted, and so on.

Algorithm is not stable.

Example

Let us assume that N is the number of elements to be sorted, and

N = 2k.

One possible implementation of Shellsort will begin by breaking

the list into N/2 sublists of 2 elements each, where the array index

of the 2 elements in each sublist differs by N/2.

j = i + N/2

If there are 16 elements in the array indexed from 0 to 15, there

would initially be 8 sublists of 2 elements each.

The first sublist would be the elements in positions 0 and 8, the

second in positions 1 and 9, and so on.

Each list of two elements is sorted using Insertion Sort.

Example (cont.)

ShellSort

void Shellsort (int v[], int n)

{

 int gap, i, j, temp;

 for (gap = n/2; gap > 0; gap /= 2)

 for (i = gap; i < n; i++)

 for (j = i-gap; j >=0 && v[j] > v[j+gap]; j -= gap) {

 temp = v[j];

 v[j] = v[j+gap];

 v[j+gap] = temp;

 }

}

ShellSort properties

Running time of shell sort depends on the increment sequence.

For the increments 1; 4; 13; 40; 121; ...,

nj = 3nj-1 + 1, where n0 = 0

which is what is used here, the running time is O(n1.5).

For other increments, time complexity is known to be O(n4/3) and

even O(n·lg2(n)).

Shellsort illustrates how we can sometimes exploit the special

properties of an algorithm (Insertion Sort) even if in general that

algorithm is unacceptably slow.

MergeSort

A natural approach to problem solving is divide and conquer.

In terms of sorting, we might consider:

• breaking the list to be sorted into pieces (divide step)

• process sorting on the pieces (conquer step)

• put pieces back together somehow (combine step)

A simple way to do this would be to split the list in half, sort the

halves, and then merge the sorted halves together.

This is the idea behind Mergesort.

Mergesort was invented by John von Neumann in 1945.

MergeSort in more detail

Since we are dealing with subproblems, we state each subproblem

as sorting a subarray A[p].

Initially, p = 1…n, but p values change as we recurse through

subproblems. To sort A[p] the following steps must be produced:

1. Divide Step

If a given array A has zero or one element, simply return; it is already sorted.

Otherwise, split A[p] into two subarrays A[p .. q] and A[q + 1 .. n], each containing

about half of the elements of A[p .. n]. That is, q is the halfway point of A[p].

2. Conquer Step

Conquer by recursively sorting the two subarrays A[p ... q] and A[q + 1 .. n].

3. Combine Step

Combine the elements back in A[p] by merging the two sorted subarrays A[p .. q]

and A[q + 1 .. n] into a sorted sequence. To accomplish this step, we will define a

procedure MERGE (A, p, q, r).

MergeSort

Nice example:
http://www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingII/mergeSort/mergeSort.html

http://www.cse.iitk.ac.in/users/dsrkg/cs210/applets/sortingII/mergeSort/mergeSort.html

MergeSort running time

Assume that n is a power of 2 so that each divide step

yields two subproblems, both of size exactly n/2.

The base case occurs when n = 1.

When n ≥ 2, time for merge sort steps:

Divide: Just compute q as the average of p and n, which

takes constant time i.e. O(1).

Conquer: Recursively solve 2 subproblems, each of size

n/2, which is 2T(n/2).

Combine: MERGE on an n-element subarray takes O(n)

time.

MergeSort running time

Summed together they give a function that is linear in n,

which is O(n).

Therefore, the recurrence for merge sort running time is:

 T(n) = O(n), if n=1

 T(n) = 2T(n/2) + O(n), if n >1

 T(n) = O(n log2n), if (recursive)

MergeSort code

#include <stdio.h>

void mergeSort (int numbers[], int temp[], int array_size);

void m_sort (int numbers[], int temp[], int left, int right);

void merge (int numbers[], int temp[], int left, int mid, int right);

int main()

{

 int array1 [5] = {65, 72, 105, 55, 2};

 int temp_array [5];

 mergeSort (array1, temp_array, 5);

 printf(“Sorted array\n\n”);

 for (int i = 0; i < 5; i++)

 {

 printf(“%d”, array1[i]);

 }

 return 0;

}

MergeSort code (cont.)

void mergeSort (int numbers[], int temp[], int array_size)

{

 m_sort (numbers[], temp[], 0, array_size - 1);

}

void m_sort (int numbers[], int temp[], int left, int right)

{

 int mid;

 if (right > left)

 {

 mid = (right + left) / 2;

 m_sort (numbers, temp, left, mid);

 m_sort (numbers, temp, (mid+1), right);

 merge(numbers, temp, left, (mid+1), right);

 }

}

MergeSort code (cont.)
void merge (int numbers[], int temp[], int left, int mid, int right)

{

 int i, left_end, num_elements, tmp_pos;

 left_end = (mid - 1);

 tmp_pos = left;

 num_elements = (right - left + 1);

 while ((left <= left_end) && (mid <= right))

 {

 if (numbers [left] <= numbers [mid])

 {

 temp [tmp_pos] = numbers [left];

 tmp_pos += 1;

 left += 1;

 }

 else

 { temp [tmp_pos] = numbers [mid];

 tmp_pos += 1;

 mid += 1;

 } }

MergeSort code (cont.)

while (left <= left_end)

 {

 temp [tmp_pos] = numbers[left];

 left += 1;

 tmp_pos += 1;

 }

 while (mid <= right)

 {

 temp [tmp_pos] = numbers[mid];

 mid += 1;

 tmp_pos += 1;

 }

 // modified

 for (i=0; i < num_elements; i++)

 {

 numbers [right] = temp [right];

 right -= 1;

 } }

Quicksort

Quicksort is named so because, when properly implemented, it

is the fastest known general-purpose in-memory sorting

algorithm in the average case. It does not require the extra

array needed by Mergesort, so it is space efficient as well.

Quicksort uses the the same divide and conquer principle.

Quicksort algorithm was developed by Tony Hoare (in USSR)

in 1960.

Quicksort

The steps of Quicksort algorithm are:

• Pick an element, called a pivot, from the list.

• Reorder the list so that all elements with values less than

the pivot come before the pivot, while all elements with

values greater than the pivot come after it (equal values can

go either way). After this partitioning, the pivot is in its final

position. This is called the partition operation.

• Recursively sort the sublist of lesser elements and the

sublist of greater elements.

Quicksort example

Quicksort

Quick sort works by partitioning a given array A[p], p=0, .. r

into two non-empty subarray A[p . . q] and A[q+1 . . r] such

that every key in A[p . . q] is less than or equal to every key

in A[q+1 . . r].

The exact position of the partition depends on the given array

and index q is computed as a part of the partitioning

procedure.

QuickSort

If p < r then

 q = Partition (A, p, r)

 Recursive call to Quick Sort (A, p, q)

 Recursive call to Quick Sort (A, q + r, r)

Partitioning procedure

Choice of Pivot

Possibilities of pivot choice:

• the leftmost element (worst-case behavior on already sorted arrays)

• the rightmost element (worst-case behavior on already sorted arrays)

• random index of the array

• middle index of the array

• median of the first, middle and last element of the partition

 for the pivot (especially for longer partitions).

Quicksort running time

Worst case performance

T(n) = O(n2)

Best case performance

T(n) = O(n log n)

Average case performance

T(n) = O(n log n)

Quicksort code

void quickSort(int arr[], int left, int right) {

 int i = left, j = right;

 int tmp;

 int pivot = arr[(left + right) / 2];

 while (i <= j) { // partition

 while (arr[i] < pivot)

 i++;

 while (arr[j] > pivot)

 j--;

 if (i <= j) {

 tmp = arr[i];

 arr[i] = arr[j];

 arr[j] = tmp;

 i++;

 j--;

 }

 }

Quicksort code (cont.)

/* recursion */

 if (left < j)

 quickSort(arr, left, j);

 if (i < right)

 quickSort(arr, i, right);

}

