
DATA STRUCTURES AND
ALGORITHMS

Sorting algorithms

External sorting, Search

Summary of the previous lecture

• Fast sorting algorithms

• Quick sort

• Heap sort

• Radix sort

• Running time of these algorithms in average is O(n log n).

External sorting

Earlier analyzed basic data structures and algorithms operate on

data stored in main memory.
Some applications require that large amounts of information be

stored and processed—so much information that it cannot all fit

into main memory.

In that case, the information must reside on disk and be
brought into main memory selectively for processing.

Primary versus Secondary Storage

Computer storage devices are typically classified into:

• primary or main memory (Random Access Memory)

• secondary or peripheral storage (hard disk drives, removeable

“flash” drives, floppy disks, CDs, DVDs, and tape drives).

Primary memory also includes registers, cache, and video

memories.

Access a byte of storage from a HDD is around 5 - 9 ms while

typical access time from standard personal computer RAM is
about 5 - 10 nanoseconds.

The number of disk accesses must be Minimized !

External sorting

Consider the problem of sorting collections of records too large
to fit in main memory. Because the records must reside in

peripheral or external memory, such sorting methods are called

external sorts.

This is in contrast to the internal sorts which assume that the
records to be sorted are stored in main memory.

External sorting

When a collection of records is too large to fit in main memory,

the only practical way to sort it is to read some records from disk,

do some rearranging, then write them back to disk.

This process is repeated until the file is sorted, with each record

read perhaps many times.

Given the high cost of disk I/O, it should come as no surprise that

the primary goal of an external sorting algorithm is to

minimize the amount of information that must be read from

or written to disk.

Block size

Sector sizes of the disc are typically a power of two, in the range

512 to 16K bytes, depending on the operating system and the

size and speed of the disk drive. The block size used for external

sorting algorithms should be equal to or a multiple of the sector

size.

Under this model, a sorting algorithm reads a block of data into

a buffer in main memory, performs some processing on it, and at

some future time writes it back to disk.

Records contained in a single block can be sorted by an internal

sorting algorithm such as Quicksort in less time.

External sort

Our approach to external sorting is derived from the Mergesort
algorithm.

The simplest form of external Mergesort performs a series of

sequential passes over the records, merging larger and larger

sublists on each pass:

the first pass merges sublists of size 1 into sublists of size 2;
the second pass merges the sublists of size 2 into sublists of

size 4; and so on.

A sorted sublist is called a run.
Thus, each pass is merging pairs of runs to form longer runs.

Each pass copies the contents of the file to another file.

External Mergesort algorithm

External Mergesort algorithm

1. Split the original file into two equal-sized run files.

2. Read one block from each run file into input buffers.

3. Take the first record from each input buffer, and write a sublist of length
two to an output buffer in sorted order.

4. Take the next record from each input buffer, and write a sublist of length
two to a second output buffer in sorted order.

5. Repeat until finished, alternating output between the two output run

buffers. Whenever the end of an input block is reached, read the next
block from the appropriate input file. When an output buffer is full, write it

to the appropriate output file.
6. Repeat steps 2 through 5, using the original output files as input files.

On the second pass, the first two records of each input run file are already
in sorted order. Thus, these two runs may be merged and output as a

single run of four elements.

7. Each pass through the run files provides larger and larger sublists until
only one sublist remains.

Searching

Searching is the most frequently performed of all computing
tasks.

Abstract definition

Search is a process to determine if an element with a particular

value is a member of a particular set.

Common definition

Search is a process how to find the record within a collection of

records that has a particular key value, or those records in a

collection whose key values meet some criterion such as falling
within a range of values.

Searching

We can define searching formally as follows. Suppose k1, k2, ... kn are
distinct keys, and that we have a collection L of n records of the form

where Ij is information associated with key kj for 1<= j <= n. Given a particular

key value K, the search problem is to locate the record (kj ; Ij) in L such that

kj = K (if one exists). Searching is a systematic method for locating the record

(or records) with key value kj = K.

A successful search is one in which a record with key kj = K is found.

An unsuccessful search is one in which no record with kj = K is found (and no

such record exists).

An exact-match query is a search for the record whose key value matches a

specified key value.

A range query is a search for all records whose key value falls within a

specified range of key values.

Searching

Search algorithms falls into three general approaches:

1. Sequential and list methods.

2. Direct access by key value (hashing).

3. Tree indexing methods.

Running time

How many comparisons does linear search do on average? A major
consideration is whether K is in list L at all.
We can simplify our analysis by ignoring everything about the input
except the position of K if it is found in L. Thus, we have n + 1
distinct possible events: that K is in one of positions 0 to n - 1 in L
(each with its own probability), or that it is not in L at all.

We can express the probability that K is not in L as:

where P(x) is the probability of event x.

Sequential search
#include <stdio.h>

int main(void)

{ int array[10]; int key;

array[0]=20; array[1]=40; array[2]=100; array[3]=80; array[4]=10;

array[5]=60; array[6]=50; array[7]=90; array[8]=30; array[9]=70;

printf(“Enter the number you want to find (from 10 to 100):”);

scanf(“%d”, &key);

int flag = 0; // set flag to off

for (int i=0; i<10; i++) // start to loop through the array

{ if (array[i] == key) // if match is found

{ flag = 1; // turn flag on
break ; // break out of for loop

} }

if (flag)

printf (“Your number is at subscript position %d\n“, i);

else

printf (“Sorry, I could not find your number in this array\n“);

}

return 0;}

