
DATA STRUCTURES AND

ALGORITHMS

Searching algorithms of the sorted lists:

Jump search, Binary search, Interpolation search

Summary of the previous lecture

• External sorting

• Merge sort

• What is difference between external and internal sorting?

• Introduction to Searching Algorithms

Search is a process to determine if an element with a particular value

is a member of a particular set.

• Sequential search

Running time:

Searching in sorted arrays

For large collections of records that are searched repeatedly,

sequential search is unacceptably slow.

One way to reduce search time is to preprocess the records

by sorting them.

If the current element in array L is greater than value K, then we

know that K cannot appear later in the array, and we can quit the

search early.

This is an example of a divide and conquer algorithm.

But this still does not improve the worst-case cost of the

searching algorithm.

Jump search

If we look first at position 1 in sorted array L and find that K is

bigger, then we rule out positions 0 and 1, because more is often

better.

What if we start searching from position 2 in array L and find that

K is still bigger? This rules out positions 0, 1, and 2 with one

comparison! 

What if we carry this to the extreme and look first at the last

position in L and find that K is bigger? Then we know in only one

comparison that K is not in L. 

But what is wrong with this approach?

Jump search

What is the right amount to jump?

Jump search algorithm

1. For some value j, we check every j’th element in array L, that

is, we check elements L[j], L[2*j], and so on till L[m*j] > K.

2. When value L[m*j] > K, we do a linear search on the interval

[(m-1)*j; m*j] of length j - 1 that we know that K exists.

If m*j < n < (m+1)*j, then

the total running time of this algorithm is at most m+j-1

Example

Jump is = 4

Jump search
What is the best value that we can pick for j?

Answer: We can found optimal j by minimizing the T(n):

Solution:

Take the derivative and solve equation:

f ’(j) = 0

to find the minimum, which is

Best running time is T(n) = O()

Jump search

Lets extend jump search to three levels search.

We would first make jumps of some size j to find a sublist of size

j - 1 whose end values bracket value K.

Then work through this sublist by making jumps of some smaller

size, say j1.

Finally, once we find a bracketed sublist of size j1 - 1, we would

do sequential search to complete the process.

Recursion can be used for three levels search.

For an k-level jump search the optimum jump size j for the l th

level (counting from 1) is n(k-l)/k.

Example

#define min(x, y) ((x) < (y) ? (x) : (y))

int JumpSearch (int a[], int n, int K)

{

int t = 0;

int b = (int)sqrt(n);

while (a [min(b,n) - 1] < K) {

t = b;

b = b + (int)sqrt(n);

if (t >= n) return -1 ;

}

while (a[t] < K) {

t = t+1;

if (t == min(b,n))

return -1 ;

if (a[t] == K) {

return t;

}

}

int main() {

int a[7] = {3,7,9,12,14,15,16};

int K =14;

printf(“Element found at the

position %d/n”, JumpSearch(a, 7,K));

return 0;

}

Binary search

Binary search begins by examining the value in the middle

position of the array L.

If L[mid] = K, then processing stops immediately.

If L[mid] > K, then search continues at the lower half of the

array L.

If L[mid] < K, then search continues at the upper half of the

array L.

Binary search

Next cycle

1. Next looks at the middle position in that part of the array

where value K may exist.

2. The value at this position again allows to eliminate half of the

remaining positions from consideration.

3. This process repeats until either the desired value is found, or

there are no positions remaining in the array that might contain

the value K.

Running time:

worst case T(n) = T(n/2) + 1 for n > 1; T(1) = 1

Average case T(n) = log n

Binary search

Consider a search for the position with value K = 45. Binary search first checks

the value at position 7. Because 41 < K, the desired value cannot appear in

any position below 7 in the array. Next, binary search checks the value at

position 11.

Because 56 > K, the desired value (if it exists) must be between positions 7

and 11. Position 9 is checked next. Again, its value is too great. The final

search is at position 8, which contains the desired value. Thus, function

returns position 8.

Alternatively, if K was 44, then the same series of record accesses

would be made. After checking position 8, function would return a value of -1,

indicating that the search is unsuccessful.

Example

int BinarySearch (int A[], int n, int K) {

int low = -1;

int high = n; // low and high are beyond array bounds

while (low +1 != high) { // Stop when low and high meet

int i = (low + high)/2; // Check middle of remaining subarray

if (K < A[i])

high = i; // In left half

if (K == A[i])

return i; // Found it

if (K > A[i])

low = i; // In right half

}

return -1; // K value not found

}

Interpolation search

If we know nothing about the distribution of key values, then binary

search is the best algorithm available for searching a sorted array.

However, sometimes we do know something about the

expected key distribution.

Consider the typical behavior of a person looking up a word in a large

dictionary. Most people certainly do not use sequential search!

A person looking for a word starting with ‘S’ generally assumes that entries

beginning with ‘S’ start about three quarters of the way through the

dictionary. Thus, he will first open the dictionary about three quarters of the

way through and then make a decision based on what they find as to

where to look next. In other words, people typically use some knowledge

about the expected distribution of key values to “compute” where to look

next.

Interpolation search

In a inerpolation search, we search L[i] at a position p that is

appropriate to the value of K as follows:

* n

At each stage it computes a probe position then as with the binary

search, moves either the upper or lower bound in to define a

smaller interval containing the K value. Unlike the binary search

which guarantees a halving of the interval's size with each stage,

interpolation reduce/increase the middle index by particular value.

Running time: worst case T(n) = O(n)

average case T(n) = O(log logn)

Example

int InterpolationSearch (int a[], int n, int K) {

int low = 0;

int high = n;

int mid;

while (a[low] <= K && a[high] >= K) {

mid = low + ((K - a[low]) * (high - low)) / (a[high] - a[low]);

if (a[mid] < K)

low = mid + 1;

else if (a[mid] > K)

high = mid - 1;

else

return mid;

}

if (a[low] == K)

return low;

else

return -1; // K value not found

}

