
DATA STRUCTURES AND

ALGORITHMS

Searching algorithms: Hashing

Summary of the previous lecture

Searching algorithms of sorted lists:

• Divide and conquer principle

• Jump search

• T(n) = O()

• Binary search

• T(n) = O(log n)

• Interpolation (dictionary) search

• T(n) = O(log log n)

Hashing

One of the possible way to search for element is to use

searching tables where element is directly accessed based on

key value.

Definition

The process of finding a record using some computation to map

its key value to a position in the table is called hashing.

Most hashing schemes place records in the table in whatever

order satisfies the needs of the address calculation, thus the

records are not ordered by value or frequency.

Definitions

The function that maps key values to positions is called a hash

function and is usually denoted by h.

The array that holds the records is called the hash table and will

be denoted by HT.

A position in the hash table is also known as a slot.

The number of slots in hash table HT will be denoted by the

variable M, with slots numbered from 0 to M - 1.

The goal for a hashing system is to arrange things such that, for

any key value K and some hash function h, i = h(K) is a slot in

the table such that 0 <= h(K) < M, and we have the key of the

record stored at HT[i] equal to K.

Example

Hash table

Consider storing collection of m records, each with a unique key

value in the range [0 ; m – 1].

A record with key k can be stored in HT[k], and the hash function

is simply h(k) = k. To find the record with key value k, simply look

in HT[k].

Hashing

• Hashing cannot be used for applications where multiple

records with the same key value are permitted.

• Hashing is not a good method for answering range

searches. In other words, we cannot easily find all records

(if any) whose key values fall within a certain range.

• Hashing is suitable for both in-memory and disk-based

searching

• Hashing is one of the two most widely used methods for

organizing large databases stored on disk

Hash tables

Typically, there are many more values in the key range than

there are slots in the hash table.

We must devise a hash function that allows us to store the

records in a much smaller table. Because the possible key

range is larger than the size of the table, at least some of the

slots must be mapped to from multiple key values.

Hash function h(k) must allow:

h(k1) = h(k2) = x

The ratio α = n/m is called a load factor, that is, the average number

of elements stored in a HT, where set size is n, HT size is m.

Collision

A hash function h maps the keys k and j to the same slot, so a

collision apears.

Example

Keys: 5, 28, 19, 15, 20, 33, 12, 17, 10

HT slots: 9

hash function = h(k) = k % 9

h(5) = 5 % 9 = 5

h(28) = 28 % 9 = 1

h(19) = 19 % 9 = 1

h(15) = 15 % 9 = 6

h(20) = 20 % 9 = 2

h(33) = 33 % 9 = 6

h(12) = 12 % 9 = 3

h(17) = 17 % 9 = 8

h(10) = 10 % 9 = 1

Collision resolution

The goal of a hash function is to minimize collisions (collisions are

normally unavoidable in practice).

Thus, hashing implementations must include some form of

collision resolution policy.

Collision resolution techniques can be broken into two classes:

• open hashing (also called separate chaining)

• closed hashing (also called open addressing).

The difference between techiques is :

• whether collisions are stored outside the table (open hashing),

• whether collisions result in storing one of the records at another

slot in the table (closed hashing).

Collision Resolution by Chaining

When there is a collision, the incoming keys is stored in an

overflow area and the corresponding record is appeared at the

end of the linked list. All records that hash to a particular slot

are placed on that slot’s linked list

Each slot HT[j] contains a linked list of all the keys whose hash

value is j. For example, h(k1) = h(kn) and h(k5) = h(k2) = h(k7).

Example of open hashing

An illustration of open hashing for seven numbers stored in a

ten-slot hash table using the hash function h(K) = K % 10

Running time

Running time in open hashing case:

• The worst case running time for insertion is O(1).

• The worst case behavior of chain-hashing, all n keys hash to

the same slot, creating a list of length n, so runing time for search

is O(n).

Hash function
A good hash function satisfies the assumption of simple uniform

hashing, each element is equally likely to hash into any of the m

slots, independently of where any other element has hash to.

When designing hash functions, we are generally faced with one of

two situations:

1. We know nothing about the distribution of the incoming keys. In

this case, we wish to select a hash function that evenly distributes

the key range across the hash table

2. We know something about the distribution of the incoming keys.

In this case, we should use a distribution-dependent hash function

that avoids assigning clusters of related key values to the same

hash table slot. For example, if hashing English words, we should

not hash on the value of the first character because this is likely to

be unevenly distributed.

Example

Here is a hash function for strings of characters:

int h(char* x) {

int i, sum;

for (sum=0, i=0; x[i] != ’\0’; i++)

sum += (int) x[i];

return sum % M;

}

This function sums the ASCII values of the letters in a string.

If the hash table size M is small, this hash function should

do a good job of distributing strings evenly among the hash

table slots, because it gives equal weight to all characters.

Example

A good hash function for numerical values is the mid-square

method. The mid-square method squares the key value, and then

takes the middle r bits of the result, giving a value in the range 0 to

2r-1.

This works well because most or all bits of the key value contribute

to the result.

For example, consider records whose keys are 4-digit numbers in

base 10. The goal is to hash these key values to a table of size 100

(i.e., a range of 0 to 99).

If the input is the number 4567, squaring yields an 8-digit number,

20857489. The middle two digits of this result are 57.

Hash function
Usually it is not possible to check this condition because one

rarely knows the probability distribution according to which

the keys are drawn.

In practice, heuristic techniques are used to create a hash

function that perform well.

Methods for Creating Hash Function

• The division method

• The multiplication method

• Closed hashing

Division Method

Map a key K into one of m slots by taking the remainder of K

divided by m.

h(k) = k % m.

Example:

m = 12;

key k = 100

h(100) = 100 % 12 = 4

Good choice of m - a prime number not too close to 2.

Multiplication Method

Two step process:

Step 1:
Multiply the key k by a constant 0< A < 1 and extract the fraction part of

kA.

Step 2:

Multiply kA by m and take the floor of the result (largest integer not

greater than kA).

Advantage of this method is that the value of m is not critical and

can be implemented on most computers.

A reasonable value of constant A is ~ (sqrt(5) - 1) /2 suggested by

Knuth's Art of Programming.

Closed hashing

In this technique all records are stored in the hash table itself.

That is, each table entry contains either an element or NULL.

Searching for the element (or empty slot):

- systematically examine slots until we found an element (or

empty slot). There are no lists and no elements stored outside

the table. That implies that table can completely "fill up“ and

the load factor α can never exceed 1.

Insertion algorithm:

• Each record R with key value kR has a home position that

is h(kR), the slot computed by the hash function.

• If R is to be inserted and another record already occupies

R’s home position, then R will be stored at some other slot

in the table.

The same principle is used for searching.

Closed hashing

Example

An illustration of bucket hashing for

seven numbers stored in a five

bucket hash table using the hash

function h(K) = K% 5.

Each bucket contains two slots.

Closed hashing

Advantage of closed hashing: avoids pointers (pointers need

space too).

Instead of hashing pointers, we compute the sequence of slots

to be examined.

To perform insertion, we successively examine or probe, the

hash table until we find an empty slot. The sequence of slots

probed "depends upon the key being inserted."

To determine which slots to probe, the hash function includes

the probe number as on of the input argument of the function.

Linear probing

Turn to the most commonly used form of hashing - closed

hashing with a collision resolution policy that can potentially use

any slot in the hash table.

During insertion, the goal of collision resolution is to find a free

slot in the hash table when the home position for the record is

already occupied.

We can view any collision resolution method as generating a

sequence of hash table slots that can potentially hold the record.

The first slot in the sequence will be the home position for the

key. If the home position is occupied, then the collision resolution

policy goes to the next slot in the sequence and so on.

Linear probing

Sequence of slots is known as the probe sequence,

and it is generated by some probe function that we will

call p.

Probe function p allows us many options for how to do

collision resolution. In fact, linear probing is one of the

worst collision resolution methods.

Linear probing example

Example of problems with

linear probing.

Four values are inserted

in the order 1001, 9050,

9877, and 2037 using hash

function h(K) = K % 10

Example

int collision_LinearProbing(int hashIndex, int count, int data)

{

if (count == hashSize)

return (fail);

if (*(head + hashIndex) == NULL)

{

*(head+hashIndex) = data;

return (success);

}

else

{ collision_LinearProbing((++hashIndex % hashSize), ++count, data);

}

}

Improved Collision Resolution Methods

One possible improvement might be to use linear probing,

but to skip slots by a constant c other than 1. This would

make the probe function

p(K; i) = ci;

and so the ith slot in the probe sequence will be

(h(K)+ic) % M.

In this way, records with adjacent home positions will not

follow the same probe sequence.

For example, if we were to skip by twos, then our offsets

from the home slot would be 2, then 4, then 6, and so on.

Improved Collision Resolution Methods

Another probe function that eliminates primary clustering is

called quadratic probing. Here the probe function is some

quadratic function

p(K; i) = c1i
2 + c2i + c3

for some choice of constants c1 + c2 + c3.

The simplest variation is p(K; i) = i2. Then the ith value in

the probe sequence would be (h(K) + i2) % M.

Under quadratic probing, two keys with different home

positions will have diverging probe sequences.

Exercise

Assume that you have a seven-slot closed hash table (the

slots are numbered 0 through 6).

Show the final hash table that would result if you used the

hash function h(k) = k % 7 and linear probing on this list of

numbers: 3, 12, 9, 2.

After inserting the record with key value 2, list for each

empty slot the probability that it will be the next one filled.

The END of theory course!!!

