
DATA STRUCTURES AND

ALGORITHMS

Dynamic data structures:

 stack, queue, deque

Summary of the previous lecture

• Definition of list and examples of the list

• List features:

• Head,

• Tail,

• Length

• Array implementation

• Add, remove, insert node

• Linked list

• Add, remove, insert node

Stack

The stack is a list-like structure in which elements may be

inserted or removed from only one end i.e.

Stack is a data structure which works based on principle

of last in first out (LIFO).

Stacks are used very frequently. Accountants used stacks

long before the invention of the computer. They called the

stack a “LIFO” list, which stands for “Last-In, First-Out.”

Note that one implication of the LIFO policy is that stacks

remove elements in reverse order of their arrival.

Stack

It is traditional to call the accessible element of the stack the

top element.

Elements are not said to be inserted; instead they are pushed

onto the stack. When removed, an element is said to be

popped from the stack.

Stack

The top item is the item always the last item to enter the

stack and it is always the first item to leave the stack since

no other items can be removed until the top item is removed.

Push and pop functions:

 Push (Stack, Item)

 Item Pop (Stack)

The Push operation has two parameters which are,

• the stack

• an item to add.

The Pop operation only takes one parameter which is a stack.

Stack

In order to implement a stack using pointers, we need to link

nodes together just like we did for the pointer implementation

of the list.

Each node contains:

• the stack item

• the pointer to the next node.

Special pointer (stack pointer) is needed to keep track of the

top of the stack.

Stack operations
 push (stack, new-item)

 Adds an item onto the stack.

item top ()
 Returns the last item pushed onto the stack.

item pop ()
 Removes the most-recently-pushed item from the stack.

bool is-empty ()
 True iff no more items can be popped and there is no top item.

bool is-full ()
 True iff no more items can be pushed.

int get-size ()
 Returns the number of elements on the stack.

Stack example

Lets calculate expression:

 9*(((5+8)+(8*7))+3)

• push(9);

• push(5);

• push(8);

• push(pop+pop);

• push(8);

• push(7);

• push(pop*pop);

• push(pop+pop);

• push(3);

• push(pop+pop);

• push(pop*pop);

• writeln(pop).

Stack

The two approaches for the stack implementation can be

used:

• array-based stack

• linked stack

Array-based stack uses “index” (integer) to manage top

node. “Index” is somewhat like a current position value (because

the “current” position is always at the top of the stack), as well

as indicating the number of elements currently in the stack.

Linked stack uses pointer to top node to manage stack. The

only data member is top, a pointer to the first (top) link node of

the stack.

Stack implementation

Array based stack

List based stack

Array-based stack implementation

Stack.h

void push (int *s, int* top, int element);

int pop (int *s, int *top);

int full (int *top, const int size);

int empty (int *top);

void init (int *top);

Array-based stack implementation

// initialize stack pointer

void init (int *top)

{

 *top = 0;

}

// push an element into stack precondition: the stack is not full

void push (int *s, int* top, int element)

{

 s[(*top)++] = element;

}

Array-based stack implementation

/* pop an element from stack precondition: stack is not empty */

int pop (int *s,int *top)

{

 return s[--(*top)];

}

/* report stack is full nor not return 1 if stack is full, otherwise return 0 */

int full (int *top, const int size)

{

 return *top == size ? 1 : 0;

}

/* report a stack is empty or not return 1 if the stack is empty, otherwise
return 0 */

int empty (int *top)

{

 return *top == 0 ? 1 : 0;

}

Array-based stack implementation

#include <stdio.h>

#include <stdlib.h>

#include "stack.h"

#define size 3

void main()

{

 int top, element;

 int stack[size];

 // initialize stack

 init(&top);

 // push elements into stack

 while(!full(&top,size)) {

 element = rand();

 printf("push element %d into stack\n",element);

 push (stack, &top, element);

 getchar();

 }

printf ("stack is full\n");

// pop elements from stack

while(!empty(&top)) {

 element = pop(stack,&top);

 printf("pop element %d from

 stack\n",element);

 getchar();

}

printf("stack is empty\n");

getchar();

}

}

Linked stack

Example of the linked stack.

// Node element:

struct node{

 int data;

 struct node *next;

};

// Push an element :

void push (int skaicius) {

 node *v;

 v =(struct node *)malloc(sizeof (struct

 node));

 v->data = skaicius;

 if (listStart == NULL) // First node

 v->next = NULL ;

 else

 v->next = listStart->next;

 listStart = v;

}

Linked stack

// Popped node:

int pop() {

node *v;

 if (listStart == NULL)

 return 1 ;

 else {

 v = listStart;

 listStart = v->next;

 delete (v);

 }

return 0;

}

// Top node:

int ReadLast() {

node *v;

 if (listStart != NULL)

 return listStart ->data

 else

 return EXIT_FAILURE;

 }

Queue

Like the stack, the queue is also a type of restricted list.

Instead of restricting all the operations to only one end of
the list as a stack does, the queue allows items to be
added at the one end of the list and removed at the other
end of the list.

This restrictions placed on a queue cause the structure to
be a "First-In, First-Out" or FIFO structure.

.

Queue example

Queue operating principle is similar to customer lines at a
in any bill payment store (eg. phone bill payment queue).

When customer A is ready to check out, he or she enters
the tail (end) of the waiting line.

When the preceding customers have paid, then customer
A pays and exits from the head of the line.

The bill-payment line is really a queue that enforces a "first
come, first serve" policy.

Queue

Basic operations:

 EnqueueItem (Queue, Item)

 Item DequeueItem (Queue)

EnqueueItem() – “enter the queue item” - operation takes the
Item parameter and adds it to the tail(end) of Queue.

DequeueItem() – “delete queue item” - operation removes the
head item of Queue and returns this as Item.

Array-based queue

Assume that there are n elements in the queue. We could

require that all elements of the queue be stored in the first n

positions of the array.

Far more efficient implementation can be obtained by relaxing

the requirement that all elements of the queue must be in the

first n positions of the array.

We will still require that the queue be stored be in contiguous

array positions, but the contents of the queue will be permitted

to drift within the array.

This type of queue is called the circular queue.

Circular queue

Front – enqueue

Rear - dequeue

Array-based queue

queue.h

void enqueue (int *q, int *tail, int element);

int dequeue (int *q, int *head);

int full (int tail, const int size);

int empty (int head, int tail);

void init (int *head, int *tail);

Array-based queue

/*initialize queue pointer*/

void init(int *head, int *tail){

*head = *tail = 0;}

/* enqueue an element precondition: the queue is not full*/

void enqueue(int *q,int *tail, int element){

 q[(*tail)++] = element;}

/* dequeue an element precondition: queue is not empty*/

int dequeue(int *q,int *head){

return q[(*head)++];}

/* report queue is full nor not return 1 if queue is full, otherwise return 0*/

int full(int tail,const int size){

return tail == size ? 1 : 0;}

/* report queue is empty or not return 1 if the queue is empty, otherwise return 0*/

int empty(int head, int tail){ return head == tail ? 1 : 0; }

Array-based queue
#include <stdio.h>

#include <stdlib.h>

#include "queue.h"

#define size 3

void main() {

int head,tail,element; int queue[size];

init(&head,&tail); // initialize queue

while(full(tail,size) != 1){ // enqueue elements

 element = rand();

 printf("enqueue element %d\n",element);

 enqueue(queue,&tail,element);

 printf("head=%d,tail=%d\n",head,tail);

 getchar(); }

printf("queue is full\n");

Array-based queue

// dequeue elements from

while(!empty(head,tail)) {

 element = dequeue(queue,&head);

 printf("dequeue element %d \n", element);

 getchar();

}

printf ("queue is empty\n");

getchar();

}

Deque

A deque is also a type of restricted list. It similar like a

queue, except that new items may be added and existing

can be removed from both the head and the tail.

It is convenient to make the deque using doubly-linked lists.

Main deque operations:

 InsertFront (Item)

 InsertRear (Item)

 Item DeleteFront()

 Item DeleteRear()

Example of Linked deque

Example of the linked deque.

Element:

struct node{

 int data;

 struct node *next;

 struct node *prev;

};

// head – head pointer

// tail – tail pointer

void InsertFront (struct node *e,

struct node *head,

struct node *tail)

{

 if (head == NULL)

 head = tail = e;

 else {

 e->next = head;

 head = e;

}

Example of Linked deque

void RemoveRear (struct node *head, struct node *tail)

{

 struct node *p = tail;

 struct node *d = head;

while (d->next->next != NULL)

 d= d->next;

 d->next = NULL;

 tail = d;

 free (p);

}

Exercises

No.1 Assume a array has the following configuration:

{ 2; 23; 15; 5; 9 }. Write a C code to delete the element with
value 15, add new element 17, replace element 23 with
new one 44.

No.2 Assume a linked list has the following configuration:

{ 2; 23; 15; 5; 9 }. Write a C code to delete the element with
value 15 and to add new element 17, replace element 23
with new one 44.

No.3 Write a C code to implement array based stack. Make
program Menu to realize user interaction.

Homework

No.1 Write program for array based queue.
All elements of the queue must be stored in the first n
positions of the array. Make program Menu to realize user
interaction.

No.2 Write program for array based circular queue. Make
program Menu to realize user interaction.

