
DATA STRUCTURES AND 

ALGORITHMS 

Hierarchical data structures:  

 Binary trees 



Summary of the previous lecture 

• Dynamic data structures 

• Lists 

• Stack  

• Queue  

• Deque 

• Array – based implementation 

• Linked list based implementation 



Tree 

Tree is non linear dynamic data structure that is very 

useful for searching. 

 



Tree definitions 

A tree is made up of a finite set of elements called nodes.  

 

This set either is empty or consists of a node called the 

root together with two binary trees, called the left and 

right subtrees, which are disjoint from each other and 

from the root. 

(Disjoint mean have no nodes in common.)  

 

The roots of these subtrees are children of the root.  

 

There is an edge from a node to each of its children, and 

a node is said to be the parent of its children. 

 



Examples of the tree 



Tree definitions 

If n1, n2, ..., nk is a sequence of nodes in the tree such that ni 

is the parent of ni+1 for 1<=  i < k, then this sequence is called 

a path from n1 to nk.  

The length of the path is k -1. 
 

The depth of a node M in the tree is the length of the path 

from the root of the tree to M.  

 

The height of a tree is one more than the depth of the 

deepest node in the tree.  

 

All nodes of depth d are at level d in the tree.  

The root is the only node at level 0, and its depth is 0. 

 



Tree definitions 

A leaf node is any node that has no children.  

 

An internal node is any node that has at least one non-

empty child. 

 

Binary trees have the restriction that nodes can't have 

more than two children.  



Tree definitions 

An example of binary tree. Node A is the root. Nodes B and C are A’s 

children. Nodes B and D together form a subtree. Node B has two children: 

Its left child is the empty tree and its right child is D. Nodes A, C, and E are 

parents of G.  

Nodes D, E, and F make up level 2 of the tree; node A is at level 0. The 

edges from A to C to E to G form a path of length 3. Nodes D, G, H, and I are 

leaves. Nodes A, B, C, E, and F are internal nodes. The depth of I is 3. The 

height of this tree is 4. 



Binary tree (full,  complete) 

Each node in a full binary tree is either an internal node with 

exactly two non-empty children or a leaf.  

 

 

A complete binary tree has a restricted shape obtained by 

starting at the root and filling the tree by levels from left to 

right.  

 

In the complete binary tree (balanced tree) of height d, all 

levels except possibly level d -1 are completely full.  

 

The bottom level has its nodes filled in from the left side. 

 



Binary tree 

First tree is full (but not complete).  Complete tree(but not full). 

 

Complete (balanced) trees 

 



Binary tree implementation (1) 

First algorithm 
 

Assume we have the following data: n1, n2, ..., nk.  
 

1. n1 – is root. 

2. n2 is compared with n1. If n2 < n1, then n2 is added to the 

left subtree, else n2 is added to the right subtree. 

3. The same principle as given in step #2 is used this the 

rest of the elements. 

 



Binary tree implementation (2) 

Second algorithm 
 

Binary tree with the least height.  



Full, complete binary tree 

First, we need to work out how many nodes, N, we have in such a 

tree of height, h.  

 

N = 1 + 21 + 22 + .... + 2h-1 

 

From which we have, N = 2h - 1 

 

and h =  log2(N+1)   

 

Examination shows that to find any node in the tree in the worst 

case, takes h or ( log2N ) steps. 



Structure of a binary node  

Node of binary tree needs to reserve memory for the data 

and two pointers (for pointing two childs of that node). 



Space Requirements 

In a simple pointer-based implementation for the binary tree, every 

node has two pointers to its children (even when the children are 

NULL). 

This implementation requires total space amounting to : 

    

   N*(2P + D)  

 

here N – number of nodes, P stands for the amount of space 

required by a pointer, and D stands for the amount of space 

required by a data value.  

 

The total overhead space will be 2*P*N for the entire tree.  

 



Space Requirements 

Thus, the overhead fraction will be:  2P/(2P + D). 

 

The actual value for this expression depends on the relative size 

of pointers versus data fields. If we arbitrarily assume that P = D, 

then a full tree has 2/3 of its total space taken up in overhead. 

 

Great savings can be had by eliminating the pointers from leaf 

nodes in full binary trees. Because about half of the nodes are 

leaves and half internal nodes, and because only internal nodes 

now have overhead, the overhead fraction in this case will be 

approximately: 

 

 

If P = D, the overhead drops to about one half of the total space 



Implentation of complete tree 

node* balancedTree (int N)      // N- number of nodes 

{   

  if ( N == 0 )  

      return (NULL); 

 nL = N/2; nR = N - nL -1; 

 x = read(); 

 node* Node= (*node) malloc(sizeof(node)); 

 (*Node).data = x; 

 (*Node).left = balancedTree(nL); 

 (*Node).right = balancedTree(nR); 

 return(Node); 

} 



Array Implentation for trees 

Compact implementation for complete binary trees is based 

on arrays. 

 



Array implementation of the tree 

The formulae for calculating the array indices of the various 

relatives of a node are as follows. The total number of 

nodes in the tree is n. The index of the node in question is 

r, which must fall in the range 0 to n - 1. 



Binary Tree Traversals 

Often we wish to process a binary tree by “visiting” each of its 

nodes, each time performing a specific action such as 

printing the contents of the node.  

 

Any process for visiting all of the nodes in some order is 

called a traversal.  

 

Any traversal that lists every node in the tree exactly once is 

called an enumeration of the tree’s nodes. 



Enumeration 

There are three principal enumerations that emerge 

naturally from the structure of trees. 

 1. Preorder: R, A, B (visit root before the subtrees) 

 2. Inorder: A, R, B 

 3. Postorder: A, B, R (visit root after the subtrees) 



Example 

Preorder enumeration:      ABDCEGFHI 

Inorder enumeration : DBAGECHFI 

Postorder enumeration:    DBGEHIFCA 

 



Example 

1. Preorder:    * + a / b c - d * e f 

2. Inorder:    a + b / c * d - e * f 

3. Postorder:   a b c / + d e f * - * 

(a + b/c) * (d – e*f) 



Binary search tree (BST) 

A BST is a binary tree that conforms to the following 

condition, known as the Binary Search Tree Property:  

•    All nodes stored in the left subtree of a node whose key 

value is K have key values less than K.  

•   All nodes stored in the right subtree of a node whose key 

value is K have key values greater than or equal to K. 

All nodes less 

then root 

All nodes greater 

then root 



Binary search tree 

Binary search tree   Node insertion 



Building binary search tree 

Initial data: 8, 11, 9, 3, 1, 14, 6, 12, 10, 7, 13, 15 

Principle used to build BST:  

Inequality pi < pk defines the which 

subtree to choose at each level.  

Comparison of the numbers is starting 

from the root node. 



Node search 

node* find_node (node* tree, int find_data) 

{ 

     while ( (tree != NULL) && ((*tree).data != find_data) ) 

    { 

 if ( (*tree).data < find_data ) 

       tree = (*tree).right; 

 else 

       tree = (*tree).left; 

     } 

   return tree; 

} 



Insert new node 

insert_node (node* tree, node* v) 

{ 

 while ( tree != NULL ) 

            { 

                     if ( (*v).data < (*tree).data ) 

                    tree = (*tree).left; 

          else 

       tree = (*tree).right; 

 } 

  tree = v; 

  (*v).left = NULL; 

  (*v).right = NULL; 

} 



Deleting BST node 

Removing the value 37 from the BST.  

The node containing this value has two 

children. We replace value 37 with the least 

value from the node’s right subtree, in this 

case 40. 

Deleting the node with minimum 

value. In this tree, the node with 

minimum value, 5, is the left child 

of the root. Thus, the root’s 

left pointer is changed to point to 

5’s right child. 



Delete BST node 
deleteNode(node* v, int a)  { 

node* p, q; 

v = find(v, a); 

if ( v != NULL ) {                // Node has found 

    q = v; 

if ( (*v).left == NULL )  {    // Not more then one child 

    v = (*v).right; 

}  }  

else 

    if ( (*v).right == NULL ) {  // Just left child 

       v = (*v).left; 

} 

 else {                                 // if v has two children, next node must be found 

     p = (*v).right; 

       while ( (*p).left != NULL ) 

             p = (*p).left; 

             v = p; 

             p = (*p).right;    (*v).left = (*q).left; 

            (*v).right = (*q).right;   }   delete q; } 



Homework 

No 1. Write a C program that implement the following 

funcionality: 

• Generate 10 random numbers and find numbers that are not 

factorial; 

•  Use these numbers (not factorials) to build binary tree (array 

implementation).  

 

No 2. Write a C program to merge two singly linked lists. 

Linked lists can have different number of nodes. 

 

 


