
DATA STRUCTURES AND

ALGORITHMS

Hierarchical data structures:

AVL tree, Bayer tree, Heap

Summary of the previous lecture

• TREE is hierarchical (non linear) data structure

• Binary trees

• Definitions

• Full tree, complete tree

• Enumeration (preorder, inorder, postorder)

• Binary search tree (BST)

AVL tree

The AVL tree (named for its inventors Adelson-Velskii and Landis

published in their paper "An algorithm for the organization of

information“ in 1962) should be viewed as a BST with the following

additional property:

- For every node, the heights of its left and right subtrees differ by at

most 1.

Difference of the subtrees height is named balanced factor.
A node with balance factor 1, 0, or -1 is considered balanced.

As long as the tree maintains this property, if the tree contains n nodes,

then it has a depth of at most log2n.

As a result, search for any node will cost log2n, and if the updates can be

done in time proportional to the depth of the node inserted or deleted,

then updates will also cost log2n, even in the worst case.

AVL tree

AVL tree Not AVL tree

Realization of AVL tree element

struct AVLnode

{

int data;

AVLnode* left;

AVLnode* right;

int factor; // balance factor

}

Adding a new node

Insert operation violates the AVL tree balance property. Prior to the

insert operation, all nodes of the tree are balanced (i.e., the depths of

the left and right subtrees for every node differ by at most one). After

inserting the node with value 5, the nodes with values 7 and 24 are no

longer balanced.

Single rotation (right)

A single rotation in an AVL tree. This operation occurs when the excess

node (in subtree A) is in the left child of the left child of the unbalanced

node labeled S. The case where the excess node is in the right child of

the right child of the unbalanced node is handled in the same way.

Single rotation (left)

AVL tree after

insertion new node 2
AVL tree after rotation

Two single rotations

Two single rotations (example)

Double rotation in AVL tree

Removing single node

Removed leaf 10Initial AVL tree Balanced AVL tree

Removing single node

Balanced AVL tree Removed node 7

Single rotation Removed node 9

Removing single node

Removed node 14 Balanced AVL tree

Bayer tree

Bayer tree (B-tree) is a tree data structure that keeps data

sorted and allows searches, sequential access, insertions,

and deletions in logarithmic amortized time.

The B-tree is a generalization of a binary search tree in

that a node can have more than two children.

All leaves of the B-tree are at the same level of the tree.

B-tree is always balanced tree.

B-tree is optimized for systems that read and write large

blocks of data. It is commonly used in databases and file

systems.

B-tree example

Property of B-tree:

P0 < k1 < P1 < k2 < P2 < … < Pm-1 < km < Pm, where m <=2N

Adding a new value into B-tree

Initial B tree

Initial B tree

Modified B tree

Modified B tree

Adding a new value into B-tree

The following algorithm is used to add new value:

• Try to put new value into leaf node.

• If leaf is full (too many key values), then leaf is divided

into two parts and middle key is moved to parent node.

• If parent is full, then it is divided into two parts and middle

key is moved to parent node at the higher level.

• This procedure is repeated till root node.

• If root is full, then it is divided into two parts and middle

key becoming a new root.

Deleting a key value

The following algorithm is used to delete a key value from

the B-tree:

• If key value is deleted from leaf node and number of the

keys is sufficient, then no more steps are made.

• If key value is deleted from internal node, then key value

from the child node is move into the place of deleted key

value.

Deleting a key value from the leaf

Deleting a key value from node

Deleting a key value from the leaf

Binary heap

A binary heap is a data structure created using a binary tree.

It can be seen as a binary tree with two additional constraints:

- The shape property: the tree is an complete binary tree; that

is, all levels of the tree, except possibly the last one (deepest)

are fully filled, and, if the last level of the tree is not complete,

the nodes of that level are filled from left to right.

-The heap property: each node is greater than or equal to each

of its children according to some comparison predicate which is

fixed for the entire data structure.

Largest node is ROOT.

Example

Binary heap

Heap is full binary tree, so it convenient to store heap in a

single array. Elements of array are heap nodes.

If heap node with index i is a parent node, then children

indexes are 2i and 2i+1.

Sequence of the elements e1 ... en can be used for building

heap and storing in the single array. Property of such array:

indexes of leafs are from (N/2 + 1) till N.

Building a heap

Assume that we have the following set of elements:

e1 e2 ... eN .

Algorithm for building a heap:

1. Put given elements into array in the same sequence as

given in the initial set.

2. Make a loop for the nodes with index number from N/2 till

1 and check if the heap property is fulfilled. If heap

property is not fulfilled, then change parent node this the

largest child.

Running time of the heap building can be evaluated as follows:

Example

Heap algorithm

Heap algorithm

Adding a new node

Adding a new element must be done as follows:

- new node must be added as a leaf and heap must be

rebuilt.

Deleting a root

Heap must be rebuilt after deleting a root as follows:

• Last leaf is becoming a root.

• Heap must be rebuilt to correspond requirement of the

heap.

