
DATA STRUCTURES AND

ALGORITHMS

Asymptotic analysis of the algorithms



Summary of the previous lecture

• Algorithm definition

• Representation of the algorithms: 

• Flowchart, 

• Pseudocode 

• Description

• Types of the algorithms

• Linear

• Branching

• Complex



Algorithm analysis

How do you compare two algorithms for solving some

problem in terms of efficiency?

The first idea is to implement both algorithms as computer 

programs and then run them on a suitable range of inputs, 

measuring how much of the resources in question each 

program uses. 

This approach is often unsatisfactory for the following reasons:

• Empirically comparing two algorithms there is always the chance that 

one of the programs was “better written” than the other.

• Empirical test cases might unfairly favor one algorithm.

• You could find that even the better of the two algorithms does not fall 

within your resource budget.



Algorithm analysis

• The critical resource for a program is most often its 

running time. 

• However, you cannot pay attention to running time alone. 

You must also be concerned with other factors such as 

the space required to run the program (both main 

memory and disk space). 

• Typically the time required for an algorithm and the space

required for a data structure are analyzed.



Basic operations

• Primary consideration when estimating an algorithm’s 

performance is the number of basic operations required by the 

algorithm to process an input of a certain size. 

• The terms “basic operations” and “size” are used for algorithms 

analysis. 

• Size is the number of inputs processed.

• For example, when comparing sorting algorithms, the size of the 

problem is typically measured by the number of records to be 

sorted. Size of the problem for adding two matrices is  n x n.

• A basic operation must have the property that its time to complete 

does not depend on the particular values of its operands. Adding 

or comparing two integer variables are examples of basic 

operations in most programming languages.



Example

A simple algorithm to solve the problem of finding the largest

value in an array of n integers.

// Return position of largest value in array A of size n

int largest (int A[ ], int n) {

int currlarge = 0; 

for ( int i = 1; i < n; i++ )

if ( A[currlarge] < A[i] )

currlarge = i; 

return currlarge; 

}



Running time

• Because the most important factor affecting running time 

is normally size of the input, for a given input size n we 

often express the time T to run the algorithm as a function 

of n, written as T(n).

• It is always assumed T(n) is a non-negative value.

• Let us call c the amount of time required to compare two 

integers in function largest. Then function largest has a 

running time expressed by the equation:

T(n) = c*n



Running time

• The running time of a statement that assigns the first 

value of an integer array to a variable is simply the time 

required to copy the value of the first array value. 

• We can assume this assignment takes a constant amount 

of time regardless of the value. 

• Let us call c1 the amount of time necessary to copy an 

integer. Thus, the equation for this algorithm is simply:

T(n) = c1

indicating that the size of the input n has no effect on the

running time. This is called a constant running time.



Example

A simple algorithm to count two dimensional matrix 

elements. Size of matrix n x n.

sum = 0;

for (i=1; i<=n; i++)

for (j=1; j<=n; j++)

sum++;

We can assume that incrementing takes constant time. Lets

call this time c2.

The total number of increment operations is n2. Thus, we 

say that the running time is:

T(n) = c2 * n
2



Growth rate



Faster PC or algorithms?

The increase in problem size that can be run in a fixed

period of time on a computer that is ten times faster.

• n is normal computer

• n’ is computer that run 10 times faster 



Asymptotic analysis

Asymptotic analysis refers to the study of an algorithm as 

the input size “gets big” or reaches a limit (in the calculus 

sense).

When comparing algorithms meant to run on small values 

of n, results of analysis can be different. 

For example, if the problem is to sort a collection of exactly 

five records, then an algorithm designed for sorting 

thousands of records is probably not appropriate, even if its

asymptotic analysis indicates good performance.



Asymptotic analysis

• Asymptotic analysis is a form of  estimation for 

algorithm resource consumption.

• It provides a simplified model of the running time or other 

resource needs of an algorithm. 

• This simplification usually helps you understand the 

behavior of your algorithms. Just be aware of the limitations

to asymptotic analysis in the rare situation where the 

constant is important.



Upper Bounds

Asymptotic analysis must evaluate aspect of the algorithm’s 

behavior. 

One of evaluation criterion is the upper bound for the 

growth of the algorithm’s running time. It indicates the 

upper or highest growth rate that the algorithm can 

have.

Because the phrase “has an upper bound to its growth rate 

of f(n)” is long and often used when discussing algorithms,  

special notation is used - big-Oh notation “O(f(n))” .



Upper Bounds

Definition for an upper bound

T(n) represents the true running time of the algorithm. 

f(n) is some expression for the upper bound. For T(n) a 

non-negatively valued function, T(n) is in set O(f(n)) if there

exist two positive constants c and n0 such that

T(n) <= c*f(n) for all n > n0.

Constant n0 is the smallest value of n for which the claim of

an upper bound holds true. Usually n0 is small, such as 1, 

but does not need to be.



Example

Consider the sequential search algorithm for finding a specified

value in an array of integers. Visiting and examining one value in

the array requires c’ steps where is c’ a positive number.

T(n) = c’ * n/2 in average case for all values of n > 1,

c’ * n/2 < c’ * n. 

Therefore, by the definition, T(n) is in O(n) for n0 > 1 and c = c’.

For a particular algorithm, T(n) = c1n
2 + c2n in the average

case where c1 and c2 are positive numbers. 

Then, c1n
2 + c2n < c1n

2 + c2n
2 < (c1 + c2)n

2 for all n > 1. 

So, T(n) < cn2 for c = c1 + c2, and n0 > 1. 

Therefore, T(n) is in O(n2) by the definition.



Example

Lets analyze function f(n) = (n+2)2

Upper bond of f(n) is

n2 + 4 n + 4 < n2 +4 n2 when n > 2

n2 + 4 n + 4 < 5 n2

Constant 5 can be reduced, if n will be larger, as for example 

if  n > 5

then  n2 + 4 n + 4 < 2 n2

In common case:

n2 + 4n + 4 < cn2

Therefore, T(n) is in O(n2) by the definition.



Lower Bounds

Similar notation as Big-Oh is used to describe the least amount 

of a resource that an algorithm needs for some class of input. 

Like big-Oh notation, this is a measure of the algorithm’s growth 

rate and it works for any resource, but we most often measure the 

least amount of time required.

The lower bound for an algorithm (or a problem, as explained 

later) is denoted by the symbol Omega, pronounced “big-Omega”

Definition for an lower bound

For T(n) a non-negatively valued function, T(n) is in set 

Omega(g(n)) if there exist two positive constants c and n0 such 

that T(n) >= c*g(n) for all n > n0



Example

Assume: T(n) = c1n
2 + c2n for c1 and c2 > 0. 

then, c1n
2 + c2n > c1n

2 for all n > 1. 

So, T(n) > cn2 for c = c1 and n0 > 1. 

Therefore, T(n) is in Omega(n2) by the definition.



Big-Theta notation

The definitions for big-Oh and Omega give us ways to describe the 

upper and lower bound for an algorithms. When the upper and 

lower bounds are the same within a constant factor, we indicate 

this by using (big-Theta) notation.



Example

a = b;

Because the assignment statement takes constant time, it is big-Theta(1).

sum = 0;

for ( i=1; i <= n; i++ )

sum += n;

The first line is Big-theta(1). The for loop is repeated n times. The third line takes 

constant time so, the total cost for executing the two lines making up the for loop 

is (n) and the cost of the entire code fragment is also big-Theta(n).

sum = 0;

for (i=1; i<=n; i++)          // loop

for (j=1; j<=i; j++)           // is a double loop

sum++;

which is Big-theta(n2)



Simplifying Rules

Following rules are used to determine the simplest form of 

big-Oh, big-Omega, big-Theta.



Classifying Functions

Given functions f(n) and g(n) whose growth rates are 

expressed as algebraic equations, we might like to determine if 

one grows faster than the other. The best way to do this is to 

take the limit of the two functions as n grows towards infinity:

If the limit goes to infinity, then f(n) is in Omega(g(n)) because 

f(n) grows faster. If the limit goes to zero, then f(n) is in O(g(n)) 

because g(n) grows faster. 

If the limit goes to some constant other than zero, then f(n) = 

Big-Theta(g(n)) because both grow at the same rate.



Example

f(n) = 2n log n; 

g(n) = n2, 

Is f(n) in O(g(n)), Omega(g(n)), or Big-theta (g(n))?

because n grows faster than 2 log n, thus, n2 is in Omega(2n log n).



Empirical analysis of algorithms

An alternative to analytical approaches of algorithms evaluations 

are empirical approaches. 

The most obvious empirical approach is simply to run two

competitors and see which performs better. In this way we might

overcome the deficiencies of analytical approaches.



Empirical analysis of algorithms

Problems
Comparative timing of programs is a difficult business, often

subject to experimental errors arising from uncontrolled factors

(system load, the language or compiler used, etc.).

The most important point is not to be biased in favor of one of

the programs. If you are biased, this is certain to be reflected in

the timings. 

The most common pitfall when writing two programs to 

compare their performance is that one receives more

code-tuning effort than the other. Code tuning can often

reduce running time by a factor of ten. If the running times

for two programs differ by a constant factor regardless of input

size, then differences in code tuning might account for any

difference in running time.



Exercises



Exercises

Calculate running time, big-Oh, big-Omega, big-Theta of 

code fragment with several for loops:

sum = 0;

for (i=1; i<=n; i++) // First for loop

for (j=1; j<=i; j++)   // is a double loop

sum++;

for (k=0; k<n; k++) // Second for loop

A[k] = k;



Exercises

Built flowchart for the following algorithm.

Find if given number is prime. Define running time of the 

algorithm.


