
DATA STRUCTURES AND

ALGORITHMS

Recursion



Summary of the previous lecture

• Complexity of the algorithms

• Running time

• Number or basic operations

• Asymptotic analysis of the algorithms

• Upper asymptotic bound (big-Oh)

• Lower asymptotic bound (big-Omega)

• Big-Theta

• Empyrical analysis of the algorithms



Recursion

Recursion is the process of repeating items in a self-

similar way.

For instance, when the surfaces of two mirrors are exactly 

parallel with each other the nested images that occur are a 

form of infinite recursion. 

The term has a variety of meanings specific to a variety of 

disciplines ranging from linguistics to logic. The most common 

application of recursion is in mathematics and computer 

science. 

Recursion refers to a method of defining functions in which 

the function being defined is applied within its own definition. 



Examples of the recursion



Recursion

• The power of recursion lies in the possibility of defining an 

infinite set of objects by a finite statement. In the same 

manner, an infinite number of computations can be described by a 

finite recursive program, even if this program contains no explicit 

repetitions.

• Most high-level computer programming languages support 

recursion by allowing a function to call itself within the program 

text. 

• Some functional programming languages do not define any 

looping constructs but rely on recursion to repeatedly call code. 

Computability theory has proven that these recursive-only 

languages can solve the same kinds of problems even without the 

typical control structures like “while” “until” and “for”.



Recursion

An algorithm is recursive if it calls itself to do part of its 

work.

A recursive algorithm must have two parts: 

• the base case, which handles a simple input that can be 

solved without resorting to a recursive call; 

• the recursive part which contains one or more recursive 

calls to the algorithm.



Example - Factorial

A classic example is the recursive definition for the factorial

function:

n! = (n - 1)! * n      for n > 1;   1! = 0! = 1.

long Fact(int n)

{

if (n < 1) 

return 1;                 // Base case: returns the base solution

return n * Fact(n-1);     // Recursive call for n > 1

}



Factorial

fact(4)

n4 = 4 * n3

= 4 * 3 * n2 

= 4 * 3 * 2 * n1 

= 4 * 3 * 2 * 1 * n0 

= 4 * 3 * 2 * 1 * 1 

= 4 * 3 * 2 * 1 

= 4 * 3 * 2 

= 4 * 6 

= 24 

Computational time:

T(n) = T(n - 1) + 1 = (T(n - 2) + 1) + 1

(T(n - 2) + 1) + 1 = T(n - 2) + 2

T(n) = T(n - (n - 1)) + (n - 1)

= T(1) + n - 1

= n - 1



Iterative code for the factorial

int fact_2(n)

{ int factorial = 1;

if (n <= 1)

return 1;

for (int i = 1 ; i <= n ; i++)

factorial = factorial * i;

return factorial;

} 



Recursion features

Depth of recursion is the longest chain of procedure that 

calculate function F(n) in recursive way.

Recursion doesn’t differ from normal procedure when 

function are used. It means, that variables are local and 

are valid just inside the single  procedure.



Example

#include <stdio.h>

int sum (int num)

{ 

if (num==0)

return 0;

return sum(num-1)+(num);

}

int main()

{

int num = 10;

printf("%d\n", sum(num));

getchar();

return 0;

}



Example

#include <stdio.h>

void Triangle (int x) 

{

if (x <= 0) 

return;

Triangle(x - 1);

for (int i = 1; i <= x; i++) 

printf("*");

printf("\n")

}

int main() {

Triangle(7);

return 0;

}



Trace of the program

Triangle(7)

Triangle(6)

Triangle(5)

Triangle(4)

Triangle(3)

Triangle(2)

Triangle(1)

Triangle(0) <-- base case

Triangle(1) <-- prints 1 star & new line

Triangle(2) <-- prints 2 stars & new line

Triangle(3) <-- prints 3 stars & new line

Triangle(4) <-- prints 4 stars & new line

Triangle(5) <-- prints 5 stars & new line

Triangle(6) <-- prints 6 stars & new line

Triangle(7) <-- prints 7 stars & new line



Fibonacci numbers

In mathematics, things are often defined recursively. For example, 

the Fibonacci numbers are often defined recursively. 

The Fibonacci numbers are defined as the sequence beginning 

with two 1's, and where each succeeding number in the sequence 

is the sum of the two preceeding numbers. 

1 1 2 3 5 8 13 21 34 55 89 ... 



Recursive program

#include <stdio.h>

int fib(int);

int N = 10;

void main()

{ int Fnumber;

for (int i = 0; i < N; i++)

{   Fnumber = fib(i);

printf("%d\n", Fnumber);

}

}

int fib (int n)

{

if (n == 0 || n == 1) 

return 1;

else 

return fib(n - 1) + fib(n - 2);

}

3

4

6



Iterative code

int fib_2(n)

{

if (n == 0 || n == 1)

return 1;

int fibprev = 1;

int fib = 1;

for (int i = 2 ; i < n ; i++)

{

int temp = fib;

fib += fibprev;

fibprev = temp;

}

return fib;

} 

Computation of running time



Notice

Recursive function always has:

• recursive part (contains one or more recursive calls)

• base case (handles a simple input that can be solved
without resorting to a recursive call)

For Fibonacci numbers, the base case is when n == 0 and 
n==1, then the program returns 1 without any further
recursive calls. 

Recursive programs must always have a base case!



Detail of recursive calculation

The computer will go through the following process to compute fib(3):

3 exceeds 1, so I need to compute and return fib(3 - 1) + fib(3 - 2).

To compute this, I first need to compute fib(2). 

2 exceeds 1, so I need to compute and return fib(2 - 1) + fib(2 - 2).

To compute this, I first need to compute fib(1). 

1 is less than or equal to 1, so I need to return 1. 

Now that I know fib(1), I need to compute fib(0). 0 is less than or equal 

to 1, so I need to return 1. Now I know fib(2 - 1) + fib(2 - 2) = 1 + 1 = 2. I 

return this. 

Now that I know fib(2) is 2, I need to compute fib(1). 1 is less than or 

equal to 1, so I need to return 1. I now know fib(3 - 1) + fib(3 - 2) = 2 + 

1 = 3. I return this. 



Towers of Hanoi

The Towers of Hanoi puzzle begins with three poles and n

rings, where all rings start on the leftmost pole (Pole A). The 

rings each have a different size, and are stacked in order of 

decreasing size with the largest ring at the bottom. The 

problem is to move the rings from the leftmost pole to the 

rightmost pole (Pole C) in a series of steps. At each step the 

top ring on some pole is moved to another pole. There is one 

limitation on where rings may be moved: a ring can never be 

moved on top of a smaller ring.

“Towers of Hanoi” natural algorithm to solve this problem has 

multiple recursive calls. It cannot be rewritten easily using 

while loops.



Towers of Hanoi

The minimum number of moves 

required to solve a Tower of Hanoi 

puzzle is 2n - 1, where n is the 

number of disks.



Towers of Hanoi

hanoi(4) 

= 2*hanoi(3) + 1 

= 2*(2*hanoi(2) + 1) + 1 

= 2*(2*(2*hanoi(1) + 1) + 1) + 1 

= 2*(2*(2*1 + 1) + 1) + 1 

= 2*(2*(3) + 1) + 1 

= 2*(7) + 1 

= 15 



Recursive code

int hanoi(int n)

{

if (n == 1) 

return 1;

else 

return 2 * hanoi(n - 1) + 1;

}



Recursion in linked lists

struct node

{ int n; // some data struct 

node *next; // pointer to another struct node 

}; 

typedef struct node *LIST; 

…..

void printList(LIST lst) 

{ if ( ! isEmpty(lst) ) // base case 

{ printf ("%d ", lst->n ); // print integer followed by a space 

printList ( lst->next ); // recursive call 

} 

} 



Recursion in binary tree

struct node 

{ int n; // some data 

struct node *left; // pointer to the left subtree 

struct node *right; // point to the right subtree 

}; 

typedef struct node *TREE; 

// Inorder printout of the binary tree : 

void printTree(TREE t) 

{ if (!isEmpty(t)) { // base case 

printTree(t->left); // go to the left 

printf("%d ", t->n); // print the integer followed by a space

printTree(t->right); // go to the right 

}

}



Recursion or iteration?

Advantages of the recursion

• Convenient way to control sequence of tasks

• Simple code 

Disadvantages of the recursion

• Stack overflow may appear

• Recursion can lead to not efficient way of the algorithm

Recommendation
Avoid to use recursion if you are not sure about problem size, 

use iterative procedure instead.



Homework

No.1

Write recursive function to determine if an input is prime 

number.

No.2

Write recursive functions to assign the particular values to 

the array, and printout array in reverse and in normal order.

No.3

Write recursive function to printout digits of the given 

number in reverse order i.e. 2015 – 5  1  0  2



Example

int isPrime (int p, int i=2)

{

if (i == p) return 1;      // better  if (i*i > p) return 1;

if (p%i == 0) 

return 0;

return isPrime (p, i+1);

}


