
DATA STRUCTURES AND

ALGORITHMS

Sorting algorithms

(insertion sort, bubble sort, selection sort)

Summary of the previous lecture

• Recursion

• Definition

• Examples

• Factorial

• Fibonacci

• Hanoi tower

• Printing of Linked list numbers

• Homework

• Assigning array element values recursively

• Recursive printing (normal and reverse order)

Sorting

We sort many things in our everyday lives:

• Files in the directory

• Directories in the local disk

• Daily tasks

• Books in the shelves

Sorting is also one of the most frequently performed computing

tasks.

Formulation of the sorting problem

Assume that we have data set A = (a1; a2 ….. aN).

We can compare these data: ai ≤ aj , when i != j.

We can to rearrange set of data so that A’ = (a’1; a’2 ….. a’N)

ai ≤ aj where i = 0, 1, 2 … N

Sorting problem allows input with two or more records that have

the same key value.

Sorting algorithm is said to be stable if it does not change the

relative ordering of records with identical key values.

Topology sort

Assume that we have set of tasks:

If relations between tasks are as follows:

then we have case of topology sort.

Example

Assume that we have 9 tasks

and relation between tasks are:

Set of sorted tasks can be:

Time complexity of sorting

When analyzing sorting algorithms, it is traditional to measure

the number of comparisons made between keys.

This measure is usually closely related to the running time for

the algorithm and has the advantage of being machine and

datatype independent.

However, in some cases records might be so large that their

physical movement might take a significant fraction of the total

running time. If so, it might be appropriate to measure the

number of swap operations performed by the algorithm.

Time complexity of sorting

Assume that we have 3 elements: a, b, c.

Sorting of these elements can be produced as binary tree.

Height of the tree is 4 and represent the worst case.

Number of comparisons

K can be calculated as:

Bubble sort

It is a relatively slow sort, but stable sorting algorithm. The

sorting procedures is similar to rise air bubble in the water.

During each iteration one element is placed in it’s proper

position.

Bubble sort
void Bubble_Sort (int array[], int length)

{

int i, j, flag = 1; // set flag to 1 to start first pass

int temp; // holding variable

for (i = 0; (i < length -1) && flag; i++)

{ flag = 0;

for (j = 0; j < (length - i -1); j++)

{ if (array [j+1] > array[j])

{ temp = array [j]; // swap elements

array [j] = array [j+1];

array [j+1] = temp;

flag = 1; // indicates that a swap occurred.

}

}

}

return;

}

Time complexity

Time complexity of Bubble sort algorithm doesn’t depend

on initial situation in data series (presorted, or already

sorted).

Number of comparison operations is equal to:

in any case of data series sorting.

Number of swapping operations:

Best case Worst case

Time complexity is O(n2) in any case.

Insertion sort

Imagine that you have a stack of phone bills from the past

two years and that you wish to organize them by date.

A fairly natural way to do this might be to look at the first

two bills and put them in order. Then take the third bill and

put it into the right order with respect to the first two, and so

on.

As you take each bill, you would add it to the sorted pile

that you have already made.

Insertion sort

Insertion sort

void insertion_Sort (int *array, int length) {

int i, j, tmp;

for (i = 1; i < length; i++) {

j = i;

while (j > 0 && (array [j – 1] > array [j]))

{ tmp = array[j];

array[j] = array[j – 1];

array[j – 1] = tmp;

j - -;

}

}

}

Time complexity

Time complexity of Insertion sort algorithm depends on

initial situation in data series (presorted, or already sorted).

Number of comparison operations is equal to:

• in best case (sorted list)

• in worst case

• in average case

Selection sort

Consider again the problem of sorting a pile of phone bills for the

past year.

Another intuitive approach might be to look through the pile until

you find the bill for January, and pull that out.

Then look through the remaining pile until you find the bill for

February, and add that behind January.

Proceed through the ever-shrinking pile of bills to select the next

one in order until you are done.

Selection Sort is particularly advantageous when the cost to do a

swap is high, for example, when the elements are long strings or other

large records.

Selection sort

Selection sort

void Selection_Sort (int *array, int length)
{

if (length <= 1)
return;

for (int i = 0; i < length – 1; i++)
{ int iSmallest = i;

for (int j = i+1; j < length; j++)
{ if (array[iSmallest] > array[j])

iSmallest = j;
}

int tmp = array[iSmallest];
array[iSmallest] = array[i];
array[i] = tmp;

}
}

Time complexity

Number of swap operations used for Selection sort

algorithm depends on initial situation in data series

(presorted, or already sorted).

Number of comparison operations is equal to:

•

in any case of data series sorting.

Number of swapping operations:

Best case Worst case

Time complexity is O(n2) in any case.

Practice tasks

No.1

Measure the real (empirical) running time of the selection,

insertion and bubble sort algorithms and compare with

asymptotic evaluation. Use random number generator.

Number of the elements ~ 106.

No.2

Write a code for finding greatest common divisor (gcd) of

two number. Two algorithms are possible:

1. Euclidean algorithm (gcd divide difference of two numbers)

2. Factorization (using prime numbers)

Example

#include <time.h> /* clock_t, clock, CLOCKS_PER_SEC */

int main ()

{ clock_t time1, time2;

float total_time;

time1 = clock();

....

time2 = clock() - time1;

total_time = ((float)time2) / CLOCKS_PER_SEC;

return 0;

}

