
Cache memory

Lecture 4

Principles, structure, mapping

Computer memory overview

Computer memory overview

By analyzing memory hierarchy from top to bottom, the

following conclusions can be done:

 a. Cost is decreasing

 b. Capacity is increasing

 c. Access time is increasing

 d. Decreasing frequency of access of the memory by

 the processor

Thus, smaller, more expensive, faster memories are

supplemented by larger, cheaper, slower memories.

Locality of reference

The principle of Locality of reference.

During the course of execution of a program, memory references

by the processor, for both instructions and data, tend to cluster.

Programs typically contain a number of iterative loops and

subroutines. Once a loop or subroutine is entered, there are

repeated references to a small set of instructions.

Similarly, operations on tables and arrays involve access to a

clustered set of data words. Over a long period of time, the

clusters in use change, but over a short period of time, the

processor is primarily working with fixed clusters of memory

references.

Cache memory

Cache memory is intended to give memory speed approaching

that of the fastest memories available, and at the same time

provide a large memory size at the price of less expensive

types of semiconductor memories.

A relatively large and slow main memory together with a

smaller, faster cache memory is used to increase performance.

The cache contains a copy of portions of main memory.

When the processor attempts to read a word of memory, a

check is made to determine if the word is in the cache. If so, the

word is delivered to the processor. If not, a block of main

memory, consisting of some fixed number of words, is read into

the cache and then the word is delivered to the processor.

Cache and Main Memory

Figure depicts the use of multiple levels of cache.

The L2 cache is slower and typically larger than the L1 cache, and the L3 cache is slower

and typically larger than the L2 cache.

Cache read operation

Cache/Main Memory Structure

Cache read/write architecture

Read architecture:

 Look Aside

 Look Through

Write architecture:

• Write Back

• Write Through.

Look Aside architecture

Look Aside architecture

Cache memory operates in parallel to the main memory.

Main memory and cache know about access cycles to the main

memory at the same time.

Advantages

This principle works faster in cache miss cases.

Disadvantages

Processor can’t access cache when another controller is working

with main memory.

Look Through architecture

Look Through architecture

Look Through cache is located between processor and main memory.

All requests and data is moving through cache before they access main

memory.

Advantages

Processor can access cache when another controller is working with main

memory.

Disadvantage

An access to the main memory is slower because first of all data are

searched in the cache and after that in main memory.

Write-through cache

Write-through cache directs write I/O onto cache and through

to underlying permanent storage before confirming I/O

completion to the host.

This ensures data updates are safely stored on, for example, a

shared storage array, but has the disadvantage that I/O still

experiences latency based on writing to that storage.

Write-through cache is good for applications that write and then

re-read data frequently as data is stored in cache and results in

low read latency.

Write-back cache

Write-back cache is where write I/O is directed to cache and

completion is immediately confirmed to the host.

This results in low latency and high throughput for write-

intensive applications, but there is data availability exposure

risk because the only copy of the written data is in cache.

Suppliers have added resiliency with products that duplicate

writes. Users need to consider whether write-back cache

solutions offer enough protection as data is exposed until it is

staged to external storage.

Write-back cache is the best performing solution for mixed

workloads as both read and write I/O have similar response

time levels.

Write-around cache

Write-around cache is a similar technique to write-through

cache, but write I/O is written directly to permanent storage,

bypassing the cache.

This can reduce the cache being flooded with write I/O that will

not subsequently be re-read, but has the disadvantage is that a

read request for recently written data will create a “cache miss”

and have to be read from slower bulk storage and experience

higher latency.

Cache/Main Memory Structure

Main memory consists of up to 2n addressable words, with each word having a

unique n-bit address. For mapping purposes, this memory is considered to consist of

a number of fixed length blocks of K words each.

That is, there are M = 2n /K blocks in main memory.

The cache consists of m blocks, called lines. Each line contains K words, plus a tag

of a few bits. Each line also includes control bits (not shown), such as a bit to indicate

whether the line has been modified since being loaded into the cache.The length of

a line, not including tag and control bits, is the line size.The line size may be as small

as 32 bits, with each “word” being a single byte; in this case the line size is 4 bytes.

The number of lines is considerably less than the number of main memory blocks

(m<< M). At any time, some subset of the blocks of memory resides in lines in the

cache. If a word in a block of memory is read, that block is transferred to one of the

lines of the cache. Because there are more blocks than lines, an individual line

cannot

be uniquely and permanently dedicated to a particular block. Thus, each line includes

a tag that identifies which particular block is currently being stored. The tag

is usually a portion of the main memory address, as described later in this section.

Cache/Main Memory Structure

Cache/Main Memory Structure

Cache line consists of:

• Index - block address of the main memory

• Data

• Tag (valid, not valid).

http://en.wikipedia.org/wiki/Image:Cache%2Cbasic.png

Mapping Function

Because there are fewer cache lines than main memory blocks,

an algorithm is needed for mapping main memory blocks into

cache lines.

Further, a means is needed for determining which main

memory block currently occupies a cache line.

The choice of the mapping function dictates how the cache is

organized.

Three techniques can be used:

 direct,

 associative,

 set associative.

Direct mapping

The simplest technique, known as direct mapping, maps each

block of main memory into only one possible cache line.

Main disadvantage is that there is a fixed cache location for any given block. Thus,

if a program happens to reference words repeatedly from two different blocks that

map into the same line, then the blocks will be continually swapped in the cache,

and the hit ratio will be low.

Associative mapping

Associative mapping maps each block of main memory into any

cache line. In this case, the cache control logic interprets a

memory address simply as a Tag and a Word field. The Tag field

uniquely identifies a block of main memory. To determine

whether a block is in the cache, the cache control logic must

simultaneously examine every line’s tag for a match.

Set - Associative mapping

Set-associative mapping is a compromise that exhibits

the strengths of both the direct and associative approaches while

reducing their disadvantages.

In this case, the cache

consists of a number

sets, each of which

consists of a number of

lines.

With set-associative

mapping, block Bj can be

mapped into any of the

lines of set j.

Cache characteristics

Cache characteristics

 cache hit

 cache miss

 hit ratio

 miss ratio = 1 – hit ratio

 hit time

 miss penalty

Cache efficiency

Cache examples

Replacement Algorithms

Once the cache has been filled, when a new block is brought into

the cache, one of the existing blocks must be replaced.

For direct mapping, there is only one possible line for any

particular block, and no choice is possible.

For the associative and set-associative techniques, a

replacement algorithm is needed.

A number of algorithms have been tried. Four of the most

common are:
• Random
• LRU (Least-recently used)
• LFU (Least frequently used)
• FIFO (First in First out)

Replacement Algorithms

The most effective is least recently used (LRU): Replace that

block in the set that has been in the cache longest with no

reference to it.

First-in-First-out (FIFO): Replace that block in the set that has

been in the cache longest. FIFO is easily implemented as a

round-robin or circular buffer technique.

Least frequently used (LFU): Replace that block in the set that

has experienced the fewest references. LFU could be

implemented by associating a counter with each line.

Random algorithm pick random line from among the candidate

lines. Simulation studies have shown that random replacement

provides only slightly inferior performance to an algorithm based

on usage.

Replacement Algorithms

 Random

 LRU (Least-recently used)

 LFU (Least frequently used)

 FIFO (First in First out)

The cache miss benchmarking result based on replacement
algorithms (Cache misses per 1000 instructions)

Cache optimization

Cache optimization strategies:

• Reducing cache miss ratio

• Larger block size

• Larger cache memory size

• Larger association level

• Reducing cache miss penalty

• Multilevel caches

• Read before write

• Reducing hit time

Increment of block size

Cache miss ratio is decresing when block size is increasing.

Percents mean miss ration

Inrement of the block row size

Results show memory access time in cycles and ns.

Multilevel caches

As logic density has increased, it has become possible to have a

cache on the same chip as the processor: the on-chip cache.

Compared with a cache reachable via an external bus, the on-

chip cache reduces the processor’s external bus activity and

therefore speeds up execution times and increases overall

system performance.

The inclusion of an on-chip cache leaves open the question of

whether an offchip, or external, cache is still desirable. Typically,

the answer is yes, and most contemporary designs include both

on-chip and external caches.

Multilevel caches

The simplest such organization is known as a two-level cache, with

the internal cache designated as level 1 (L1) and the external cache

designated as level 2 (L2) and level 3 (L3).

The reason for including an L2 cache is the following: If there is no

L2 cache and the processor makes an access request for a

memory location not in the L1 cache, then the processor must

access DRAM or ROM memory across the bus. Due to the typically

slow bus speed and slow memory access time, this results in poor

performance. On the other hand, if an L2 SRAM (static RAM) cache

is used, then frequently the missing information can be quickly

retrieved.

Hit ratio of multilevel cache

Cache optimization

