Lecture 4

Principles, structure, mapping

‘ Computer memory overview

Computer memory overview

By analyzing memory hierarchy from top to bottom, the
following conclusions can be done:

a. Cost is decreasing
b. Capacity is increasing
c. Access time is increasing

d. Decreasing frequency of access of the memory by
the processor

Thus, smaller, more expensive, faster memories are
supplemented by larger, cheaper, slower memories.

Locality of reference

The principle of Locality of reference.

During the course of execution of a program, memory references
by the processor, for both instructions and data, tend to cluster.

Programs typically contain a number of iterative loops and
subroutines. Once a loop or subroutine Is entered, there are
repeated references to a small set of instructions.

Similarly, operations on tables and arrays involve access to a
clustered set of data words. Over a long period of time, the
clusters in use change, but over a short period of time, the

processor is primarily working with fixed clusters of memory
references.

Cache memory

Cache memory is intended to give memory speed approaching
that of the fastest memories available, and at the same time
provide a large memory size at the price of less expensive
types of semiconductor memories.

A relatively large and slow main memory together with a
smaller, faster cache memory is used to increase performance.
The cache contains a copy of portions of main memory.

When the processor attempts to read a word of memory, a
check is made to determine if the word is in the cache. If so, the
word Is delivered to the processor. If not, a block of main
memory, consisting of some fixed number of words, is read into

the cache and then the word is delivered to the processor.

Cache and Main Memory

Block Transfer
Word Transfer f_“)k—"'\
i
CPU i Cache B Main memory
Fast Slow
(a) Single cache
W —
CPU = Level 1 = Level 2 = Level 3 = Main
' «—](L.1) cache [fe——(L2) cache [f—{(L3) cache| < mMemory
Fastest Fast
Less Slow
fast

(b) Three-level cache organization

Figure depicts the use of multiple levels of cache.
The L2 cache is slower and typically larger than the L1 cache, and the L3 cache is slower
and typically larger than the L2 cache.

Cache read operation

Receive address
RA from CPU

|

Is block
containing RA
in cache?

Yes

Fetch RA word
and deliver
to CPU

Access main
memory for block
containing RA

Allocate cache
line for main
memory block

Load main
memory block
into cache line

Deliver RA word
to CPU

(" DONE)
NI

Cache/Main Memory Structure

Cache Addresses Write Policy
Logical Write through
Physical Write back
Cache Size Write once
Mapping Function Line Size
Direct Number of caches
Associative Single or two level
Set Associative Unified or split

Replacement Algorithm
Least recently used (LRU)
First in first out (FIFO)
Least frequently used (LFU)

Random

[Cache read/write architecture

Read architecture;:
= Look Aside
= Look Through

Write architecture:
* Write Back
« Write Through.

Look Aside architecture

Spartinandioly gtiintis
_ . CHY — — icache?
ISQFIRE pracesorigls stating atmintis
manistralé = ISRANMY /
\ iI .
Paerineing gbmintis B } <: Ko Spartinandiosios
4 K ¥ atminties valdiklis

17

Pofyiniy katalogas
1Tag RAM}

Il

Sasterinis Interfelsas

L ook Aside architecture

Cache memory operates in parallel to the main memory.

Main memory and cache know about access cycles to the main
memory at the same time.

Advantages
This principle works faster in cache miss cases.
Disadvantages

Processor can’'t access cache when another controller is working
with main memory.

Look Through architecture

ISaring procesorians

manglstraie

Gy

T~ 4T

Spartinancioll atiintis
{cache}

1l

‘..____.- 1

‘ Statine atinlntis 4 ») Spartinanciosios [L— M Polvmiy katalogas
f=FRANM] | attinties valdiilis f—— iTag RAM;
I -
ISOETRE Proce SOFENS
I magistrale

Pagrinding a'tmmn'sf'd I'“-
'y .

-

Slsterinis Interelsas

Look Through architecture

Look Through cache is located between processor and main memory.
All requests and data is moving through cache before they access main

memory.

Advantages

Processor can access cache when another controller is working with main
memory.

Disadvantage

An access to the main memory is slower because first of all data are
searched in the cache and after that in main memory.

[Write-through cache

Write-through cache directs write 1/O onto cache and through
to underlying permanent storage before confirming I/O
completion to the host.

This ensures data updates are safely stored on, for example, a
shared storage array, but has the disadvantage that 1/O still
experiences latency based on writing to that storage.

Write-through cache is good for applications that write and then
re-read data frequently as data is stored in cache and results In
low read latency.

[Write-back cache

Write-back cache is where write I/O is directed to cache and
completion is immediately confirmed to the host.

This results in low latency and high throughput for write-
Intensive applications, but there is data availability exposure
risk because the only copy of the written data is in cache.

Suppliers have added resiliency with products that duplicate
writes. Users need to consider whether write-back cache
solutions offer enough protection as data is exposed until it is
staged to external storage.

Write-back cache is the best performing solution for mixed
workloads as both read and write I/O have similar response
time levels.

[Write-around cache

Write-around cache is a similar technique to write-through
cache, but write 1/O is written directly to permanent storage,
bypassing the cache.

This can reduce the cache being flooded with write /O that will
not subsequently be re-read, but has the disadvantage is that a
read request for recently written data will create a “cache miss”

and have to be read from slower bulk storage and experience
higher latency.

Cache/Main Memory Structure

Main memory consists of up to 2" addressable words, with each word having a
unique n-bit address. For mapping purposes, this memory is considered to consist of
a number of fixed length blocks of K words each.

That is, there are M = 2" /K blocks in main memory.

The cache consists of m blocks, called lines. Each line contains K words, plus a tag
of a few bits. Each line also includes control bits (not shown), such as a bit to indicate
whether the line has been modified since being loaded into the cache.The length of

a line, not including tag and control bits, is the line size.The line size may be as small
as 32 bits, with each “word” being a single byte; in this case the line size is 4 bytes.

The number of lines is considerably less than the number of main memory blocks
(m<< M). At any time, some subset of the blocks of memory resides in lines in the
cache. If a word in a block of memory is read, that block is transferred to one of the
lines of the cache. Because there are more blocks than lines, an individual line
cannot

be uniquely and permanently dedicated to a particular block. Thus, each line includes

a tag that identifies which particular block is currently being stored. The tag
icriciiallvy a nortinn nof the Mmain Mmemoryvy addrece ac dAaceribad |atar in thic cacrtinn

Cache/Main Memory Structure

Line Memory
Number Tag Block address
0 0
1 1
2 2 Block
3 (K words)
C -1
Block Length
(K Words)
(a) Cache
Block
2" -1
Word
Length_p

(b) Main memory

Cache/Main Memory Structure

Main Cache
Memaory Memaory
Index Data Index Tag Data
0 xyz 0 2 abc
1 pdg >‘< 1 0 xyz

2 abc
3 rgf

Cache line consists of:

* Index - block address of the main memory

* Data
 Tag (valid, not valid).

http://en.wikipedia.org/wiki/Image:Cache%2Cbasic.png

Mapping Function

Because there are fewer cache lines than main memory blocks,
an algorithm is needed for mapping main memory blocks into
cache lines.

Further, a means is needed for determining which main
memory block currently occupies a cache line.

The choice of the mapping function dictates how the cache is
organized.

Three techniques can be used:
= direct,

= associative,

= Set associative.

Direct mapping

The simplest technique, known as direct mapping, maps each

block of main memory into only one possible cache line.
b t b

il . L i L
o o it il -

[3|] = ['[l r)

m lines

B | . Lt 7

First m blocks of Cache memory

main memory
{equal to size of cache) b = length of block in bits
t = length of tag in bits

Main disadvantage is that there is a fixed cache location for any given block. Thus,
If a program happens to reference words repeatedly from two different blocks that
map into the same line, then the blocks will be continually swapped in the cache,
and the hit ratio will be low.

Assoclative mapping

Associative mapping maps each block of main memory into any
cache line. In this case, the cache control logic interprets a
memory address simply as a Tag and a Word field. The Tag field
uniquely identifies a block of main memory. To determine
whether a block is in the cache, the cache control logic must
simultaneously examine every line’s tag for a match.

f b

bh

=

One block of
main memory

Cache memory

Set - Associative mapping

Set-associative mapping is a compromise that exhibits
the strengths of both the direct and associative approaches while

reducing their disadvantages.

In this case, the cache B0
consists of a number

sets, each of which

consists of a number of

lines.

By_|

mapping, block B, can be
mapped into any of the
lines of set |.

Kk lines

> Lo 4
R .
[]
L]
-
[]
L
Ly

Cache memory-set 0

First v blocks of
main memory

With set-associative (cqual to number of sets N\

Cache memory—set v-1

Cache characteristics

Cache characteristics
cache hit
cache miss
hit ratio
miss ratio = 1 — hit ratio
hit time

mISs penalty

miss rate

Cache efficiency

0.1

0.01

0.001

1e-04

1e-05

1e-06

Direct
2-way
4-way ——
d-way ————

Full

1K

4K

16K

64K
cache size

256K

1M

Inf

Cache examples

Year of

Processor Type Introduction L1 Cache® L2 Cache L3 Cache
IBM 360/85 Mainframe 1968 16 to 32 kB - —
PDP-11/70 Minicomputer 1975 1 kB — -
VAX 11/780 Minicomputer 1978 16 kB — —
IBM 3033 Mainframe 1978 64 kB — —
IBM 3090 Mainframe 1985 128 to 256 kB — —
Intel 80486 PC 1989 8kB — —
Pentium PC 1993 8 kB/8 kB 256 to 512 KB —
PowerPC 601 PC 1993 32kB — —
PowerPC 620 PC 1996 32 kB/32 kB — —
PowerPC G4 PClserver 1999 32 kB/32kB 256 KBto 1 MB 2MB
IBM §/390 G4 Mainframe 1997 32kB 256 KB 2MB
IBM §/390 G6 Mainframe 1999 256 kB 8 MB —
Pentium 4 PClserver 2000 8 kB/8 kB 256 KB —
IBM SP P:f;;f;dnf;::f 2000 64 kB/32 kB 8 MB —
CRAY MTAP Supercomputer 2000 kB 2MB —
Itanium PClserver 2001 16 kB/16 kB 96 KB 4 MB
SGI Origin 2001 High-end server 2001 32 kB/32kB 4 MB —
Itanium 2 PClserver 2002 32 kB 256 KB 6 MB
IBM POWERS High-end server 2003 64 kB L9MB 36 MB
CRAY XD-1 Supercomputer 2004 64 kB/64 kB 1 MB —
IBM POWERS®& PClserver 2007 64 kB/64 kB 4 MB 32ZMB
IBM z10 Mainframe 2008 64 kB/128 kB 3MB 2448 MB

Replacement Algorithms

Once the cache has been filled, when a new block is brought into
the cache, one of the existing blocks must be replaced.

For direct mapping, there is only one possible line for any
particular block, and no choice is possible.

For the associative and set-associative techniques, a
replacement algorithm is needed.

A number of algorithms have been tried. Four of the most

common are:
« Random

« LRU (Least-recently used)

« LFU (Least frequently used)
« FIFO (First in First out)

Replacement Algorithms

The most effective is least recently used (LRU): Replace that
block in the set that has been in the cache longest with no
reference to it.

First-in-First-out (FIFO): Replace that block in the set that has
been in the cache longest. FIFO is easily implemented as a
round-robin or circular buffer technique.

Least frequently used (LFU): Replace that block in the set that
has experienced the fewest references. LFU could be
Implemented by associating a counter with each line.

Random algorithm pick random line from among the candidate
lines. Simulation studies have shown that random replacement
provides only slightly inferior performance to an algorithm based
on usage.

Replacement Algorithms

Random

LRU (Least-recently used)
LFU (Least frequently used)
FIFO (First in First out)

The cache miss benchmarking result based on replacement
algorithms (Cache misses per 1000 instructions)

Associativity

Two-way Four-way Eight-way
Size LRU Random FIFO LRU Random FIFO LRU Random FIFO
16 KB 114.] 117.3 115.5 117 150 1133 1090 111.8 1104
64 KB 1034 1043 103.9 102.4 102.3 103.] 99.7 1005 1003
56 KB 92.2 92.] 92.5 92, 92| 92.5 92.1 92] 023

Cache optimization

Cache optimization strategies:

* Reducing cache miss ratio
 Larger block size
 Larger cache memory size
 Larger association level

 Reducing cache miss penalty

- Multilevel caches
* Read before write

* Reducing hit time

Increment of block size

Block size

Cache size

4K 16K 64K 256K
16 8.57% 3.94% 2.04% 1.09%
32 71.24% 2.87% 1.35% 0.70%
64 7.00% 2.649% 1.06% 0.51%
128 1.78% 2.77% 1.02% 0.49%
256 9.51% 3.29% 1.15% .49%

Cache miss ratio is decresing when block size is increasing.

Percents mean miss ration

Inrement of the block row size

Cache size
Block size Miss penalty 4K 16K 64K 256K
16 82 8.027 4.23] 2.673 |.894
32 84 7.082 3411 2.134 1.588
64 88 7.160 3.323 1.933 1.449
128 96 8.469 3.659 1.979 1.470

256 112 11.651 4.685 2.288 1.549

Results show memory access time in cycles and ns.

Multilevel caches

As logic density has increased, it has become possible to have a
cache on the same chip as the processor: the on-chip cache.

Compared with a cache reachable via an external bus, the on-
chip cache reduces the processor’s external bus activity and
therefore speeds up execution times and increases overall

system performance.

The inclusion of an on-chip cache leaves open the question of

whether an offchip, or external, cache is still desirable. Typically,
the answer is yes, and most contemporary designs include both
on-chip and external caches.

Multilevel caches

The simplest such organization is known as a two-level cache, with
the internal cache designated as level 1 (L1) and the external cache
designated as level 2 (L2) and level 3 (L3).

The reason for including an L2 cache is the following: If there is no
L2 cache and the processor makes an access request for a
memory location not in the L1 cache, then the processor must
access DRAM or ROM memory across the bus. Due to the typically
slow bus speed and slow memory access time, this results in poor
performance. On the other hand, if an L2 SRAM (static RAM) cache
IS used, then frequently the missing information can be quickly
retrieved.

Hit ratio of multilevel cache

Hit ratio

0.98

0.96

0.94

0.92

0.90

0.88

0.86

0.84 +

0.82

0.80

0.78

--==LI = 16k
L1 =8k
| | | | | | | | | | 1
Ik 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M

L2 cache size (bytes)

Cache optimization

Hit Miss Miss Hardware

Technique time penalty rate complexity Comment

Larger block size - + 0 Trivial: Pentium 4 1.2 uses 128 bytes

Larger cache size — + l Widely used, especially for [.2
caches

Higher associativity - + I Widely used

Multilevel caches + 2 Costly hardware: harder if L1 block
size # 1.2 block size; widely used

Read priority over writes + I Widely used

Avoiding address translation during + I Widely used

cache indexing

