Laboratorinis darbas Nr. 8

Darbo pavadinimas: Bevielio tinklo prieigos taško konfigūravimas ir perdavimo greičio testavimas

Darbo tikslas: susipažinti su prieigos taško konfigūravimo galimybėmis ir išmokti jį konfigūruoti. Išmokti matuoti tinklo pralaidumą.

Darbo eiga:

Bevielio tinklo prieigos taško konfigūravimas

1. Prieigos taško duomenis

Eil. Nr.	Prieigos taško modelis (802.11x standartas), dažnis	Prievadų skaičius		Prievadų greitis, Mbps		MAC adresas
		WAN	LAN	WAN	LAN	
1.						

2. Prijungti prieigos tašką prie tinklo naudojant tokią tinklo schemą.

- 3. Nustatyti DHCP serverį.
- 4. Priskirti klientų prisijungimams skirtų IP adresų sritį 192.168.1.128/25.
- 5. Nustatyti DNS serverį 158.129.192.2 (ns.vgtu.lt)
- 6. Nustatyti SSID (service set identifier) vardą VIS12.
- 7. Nustatyti kanalo numerį 4.
- 8. Nustatyti WPA2 šifravimo algoritmą ir tinkamą slaptažodį.
- Kompiuteryje nustatyti Interneto bendrinimo funkciją: (<u>http://support.microsoft.com/kb/306126</u>)
- 10. Prijungti mobilų telefoną prie prieigos taško ir patikrinti interneto ryšį.
- Panagrinėti ugniasienės nustatymus. Uždrausti 443 prievadą (https protokolą).
 Patikrinti ar galima atidaryti svetainę <u>https://e.seb.lt</u>

Bevielio tinklo greitaveikos matavimas

- 1. Prijungti prieigos tašką prie tinklo naudojant tokias tinklo schemas (tolesnius veiksmus reiks atlikti naudojant *a* ir *b* schemas).
- 2. Naudodamiesi **ping.exe** komandą, patikrinkite kompiuterių ir prieigos taško pasiekiamumą tinkle.

- 3. Naudojant **iperf.exe** programą atlikti tinklo pralaidumo matavimus ir palyginti rezultatus.
- 4. Pirmame kompiuteryje (192.168.1.201) atidarykite komandinį langą ir jame paleiskite komandą **iperf** –**s**
- 5. Antrame kompiuteryje (192.168.1.202) atidarykite komandinį langą ir jame paleiskite komandą **iperf –c 192.168.1.201**
- 6. Pakeiskite TCP lango dydį į 100K 150K, 300K, 450K. (naudoti raktą –w) ir atlikite matavimus.
- 7. Gautus rezultatus užrašykite į lentelę, atlikite rezultatų analizę ir padarykite išvadas.

Eil.	Tinklo	Teorinis tinklo	Išmatuotas	Lango dydis,	Skirtumas
Nr.	schema	sąsajos pralaidumas,	pralaidumas, Mbps	KB	(%)
		Mbps		(optimalus)	
1.	WiFi (a)				
2.	UTP (b)				

- 8. Sujunkite į bevielį tinklą du prieigos taškus, sudarydami ad-hoc tinklą pagal pateiktą schemą. Sudarykite tinklą naudodami:
 - a. Ad-hoc tinklą
 - b. Bridged client tinklą

- 9. Naudodamiesi **ping.exe** komandą, patikrinkite kompiuterių ir prieigos taško pasiekiamumą tinkle.
- 10. Naudojant **iperf.exe** programą atlikti tinklo pralaidumo matavimus analogiškai kaip ankstesniu atveju, palyginti rezultatus.
- 11. Gautus rezultatus užrašykite į lentelę, atlikite rezultatų analizę ir padarykite išvadas.

Eil. Nr.	Tinklo schema	Išmatuotas pralaidumas, Mbps	Lango dydis, KB (optimalus)
1.	Ad-hoc		
2.	Bridged-client		

Klausimai

- 1. Kokio dažnio radio bangos naudojamos WLAN?
- 2. Koks IEEE standartas apibrėžia WLAN?
- 3. Kokie perdavimo rėžimai (prieigos prie terpės metodai) naudojami WLAN?
- 4. Kokie saugumo algoritmai naudojami WLAN?
- 5. Kam naudojamas Ad-hoc sujungimai bevieliuose tinkluose?